| | ENGINEERING (| CHANGE NOTICE | Page | 1 of <u>Z</u> | 1. ECN 671068 | | | | |--|---|--|------------------|------------------|---|--|--|--| | | O Orleinstada Norsa Orres | hadian MSM and Talenhama | | 4. USQ Required? | 5. Date | | | | | 2. ECN Category (mark one) Supplemental | 6- | nization, MSIN, and Telephone I
ventory & Flowsheet | - I | | | | | | | Supplemental L | R3-72, 373-2053 | encory a riowancec | Zing. | ☐ Yes ⊠ No | 01/07/02 | | | | | Change ECN | 6. Project Title/No./Work Or | der No. | 7. Bldg./Sys | /Fac. No. | 8. Approval Designator | | | | | Temporery | Waste Tank Summar | | | •- | | | | | | Standby | Month Ending Nove | ember 30, 2001 | N
10. Related | /A
ECN No(e) | N/A
11. Related PO No. | | | | | Supersedure | 9. Document Numbers Cha
sheet no. and rev.) | ilded by this EOM (hickores | IO. Neleveu | EC14 140(\$). | Tr. Nested FO No. | | | | | Cancel/Vold | HNF-EP-0182, Rev. | 163 | N | /A | N/A | | | | | 12a. Modification Work | 12b. Work Package No. | 12c. Modification Work Compl | eted | 12d. Restored | to Original Condition (Temp.
by ECNs only) | | | | | Yes (fill out Blk. 12b) | | N / 7 | | Or Starrox | N/A | | | | | No (NA Blks. 12b,
12c, 12d) | n/A | N/A Design Authority/Cog. Engine Date | er Signature | & Design Autho | ority/Cog. Engineer Signature & | | | | | 13a. Description of Change | | 13b. Design Baseline Docume | | ⊠ No | Uate . | | | | | Complete revision | | | R | MAR 2 5 20 | | | | | | Computer generated | • | | | EDMC | 1 | | | | | , | | | \ . 4 | - 2KA | 1,587 KB | | | | | File: \\AP001\CHG- | DOC-TRANSFER-TEMP | -HNF-EP-0182-/5-90 | KB TO | 3 /3116 A. to | 1624,576 6419 | | | | | Size: 1.55M6(/ | 628, 16 0 Jog 7C. | 7. | (Bouh | - 1 | 1.54MB | | | | | Modified: Wedne. | sday, JANUA | ey 16, 2002 | Thurs | days | 13mg | | | | | Modified: Wedne. | 3:51:40 | pm |) 1210 | 15.016 pm | NON, Feb 4, 2002 | | | | | 14a. Justification (mark one) | 14b. Justification Details | | | | | | | | | Criteria Change | . To the state of | | | | | | | | | Design Improvement | | ng generated to upda | ate wast | e tank farm : | summary | | | | | Environmental | information. | | | | | | | | | Facility Deactivation | | | | | | | | | | As-Found | | | | | , | | | | | Facilitate Const. | | | | | | | | | | Const. Error/Omission | | • | | | , | | | | | Design Error/Omission | | | | | | | | | | 15. Distribution (include name, | , MSIN, and no. of copies) | | | | RELEASE STAMP | | | | | Distribution list | Distribution list attached following document FEB 0 4 2002 | | | | | | | | | Also: Electronic copy to John Vann only STA: 4 RELEASE | | | | | | | | | | | | | 2 | | | | 1. ECN (use no. from | pg. 1) | |---|---|---------------------------------------|------------|--------------|-------------------|--------------------------------|---------------------------|--------| | | | IG CHANGE NO | TICE | | | Page 2 of | 671068 | | | 16. Design Verification
Required | 17. Cost impact ' ENGINEERII | NG | | CC | NSTR | JCTION | 18. Schedule Impact | (days) | | ☐ Yes | Additional | A | dditional | | \$ | | Improvement 🔲 | | | ⊠ No | Savings 🗆 \$ | Si | vings | | \$ | <u> </u> | Delay 🔲 _ | | | 19. Change Impact Revie | w: Indicate the related docum
in Block 13. Enter the affecte | ents (other than the eng | ineering o | ocun | ents id | entified on Side 1) that | will be affected by | | | SDD/DD | | Seismic/Stress An | | | П | | bration Manual | П | | Functional Design C | | Stress/Design Rep | • • • • | | \Box | | vaics Procedure | | | Operating Specificati | | Interface Control D | | | | | ultiple Unit Listing | _ | | Criticality Specification | _ | Calibration Proced | • | | | • | edures/Specification | | | Conceptual Design F | Report 🔲 | Installation Proced | lure | | | Compone | ent Index | | | Equipment Spec. | | Maintenance Proc | edure | | | ASME Co | ded Item | | | Const. Spec. | | Engineering Proce | dure | | | Human F | actor Consideration | | | Procurement Spec. | | Operating Instructi | on | | | Compute | r Software | | | Vendor Information | | Operating Procedu | | | ㅁ | | Ircuit Schedule | | | OM Manual | | Operational Safety | Requirer | nent | | ICRS Pro | | | | FSAR/SAR | | IEFD Drawing | . | | | | Control Manual/Plan | | | Safety Equipment Lie | | Cell Arrangement | _ | | H | | Flow Chart
Requisition | | | Radiation Work Perm Environmental Impac | ·· = | Essential Material Fac. Proc. Samp. 9 | • | wn | | Tickler Fil | • | H | | Environmental Repor | | Inspection Plan | | | $\overline{\Box}$ | | . | ō | | Environmental Permi | _ | Inventory Adjustme | ent Reque | est | | | | | | N. | /A | | | | | | | | | 21. Approvals | Signature | Date | <u>-</u> | | | Signature | Date | • | | Design Authority | | | Design | Age | nt | | | | | Cog. Eng. B.M. Har | non bow Hanlan | 1/7/02 | PE | | | | | | | Cog. Mgr. N.W. Kil | | 1/17/02 | QA | _ | | | | | | | | 71/1 | | - | | | | | | QA | | | Safety | - | | | | | | Safety | | | Design | ٠ – | | | | | | Environ. | | | Enviro | n | _ | | | | | Other | | | Other | - | | | | | | • | | | | , | | | | | | | | | | | | | | | | | | | Signat | ure o | | ENERGY rol Number that tracks | the | | | | | | ADDIT | 10NA | L | | | | | | | | | | | | | | ### WASTE TANK SUMMARY REPORT FOR MONTH **ENDING NOVEMBER 30, 2001** #### BM HANLON CH2M HILL Hanford Group, Inc. . . Richland, WA 99352 U.S. Department of Energy Contract DE-AC27-99RL14047 EDT/ECN: ECN-671068 Cost Center: B&R Code: Charge Code: Total Pages: 68 Key Words: REPORT, WASTE TANK SUMMARY Abstract: See page iii of document TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. Printed in the United States of America. To obtain copies of this document, contact: Document Control Services, P.O. Box 950, Malistop H6-08, Richland WA 99352, Phone (509) 372-2420; Fax (509) 378-4989. HANFORD Release Stamp **Approved For Public Release** #### **RECORD OF REVISION** (1) Document Number HNF-EP-0182 Page 1 (2) Title WASTE TANK SUMMARY REPORT FOR MONTH ENDING NOVEMBER 30, 2001 | Change Control Record | | | | | | | |-----------------------|--|-------------------------|--------------------|--|--|--| | (3) Revision | (4) Description of Change - Replace, Add, and Delete Pages | Author | ized for Release | | | | | (3) Kevision | | (5) Cog. Engr. | (6) Cog. Mgr. Date | | | | | 153 | (7)
EDT-631372 | BM Hanlon | JS Garfield | | | | | RS ¹⁶⁴ | Incorporation of ECN-671068 | Bow Harlan
BM Hanlon | NW Kirch | / | 1 | 1 | I | | | | # Waste Tank Summary Report for Month Ending November 30, 2001 B. M. Hanlon CH2M HILL Hanford Group, Inc. • . • Date Published January 2001 Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management ## CH2NHILL Hanford Group, Inc. P. O. Box 1500 Richland, Washington Contractor for the U.S. Department of Energy Office of River Protection under Contract DE-AC27-99RL14047 Approved for Public Release; Further Dissemination Unlimited . . #### WASTE TANK SUMMARY REPORT #### B. M. Hanlon ####
ABSTRACT This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 60 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of U. S. Department of Energy Order 435.1 (DOE-HQ, August 28, 2001, Radioactive Waste Management, U. S. Department of Energy-Washington D.C.) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm tanks. This page intentionally left blank. #### TABLE OF CONTENTS | SU | JMMARY1 | |----|--| | I. | WASTE TANK STATUS1 | | П. | WASTE TANK INVESTIGATIONS1 | | Ш | SURVEILLANCE AND WASTE TANK STATUS HIGHLIGHTS2 | | Aŗ | ppendixes: | | A. | DOUBLE-SHELL TANKS - MONTHLY SUMMARY TABLES | | | Tables: | | | 1 Inventory and Status by Tank - Double-Shell Tanks | | | 2 Summary of Waste Transactions in the Double-Shell Tank System | | | Double-Shell Tank Space Usage and Inventory by Waste Type | | В. | SINGLE-SHELL TANKS – MONTHLY SUMMARY TABLES | | | 1 Inventory and Status by Tank - Single-Shell Tanks | | | 2 Single-Shell Tanks Stabilization Status Summary | | | 3 Single-Shell Tanks Interim Stabilization Status | | | 4 Single-Shell Tanks Interim Stabilization Milestones (Consent Decree) | | | 5 Single-Shell Tanks Leak Volume Estimates | | | 6 Single-Shell Tanks Monitoring Compliance Status | | C. | MISCELLANEOUS UNDERGROUND STORAGE TANKS AND SPECIAL | | | SURVEILLANCE FACILITIES | | | Tables: | | | 1 Miscellaneous Underground Storage Tanks and Special Surveillance Facilities (Active) | | | 2 East Area Underground Storage Tanks and Special Surveillance Facilities (Inactive) | | | 5 West Area Onderground Surage Tanks and Special Surveillance Facilities (macrive) | | D. | GLOSSARY OF TERMS | | | Tables: | | | 1 Glossary of Terms | | E. | TANK CONFIGURATION AND FACILITIES CHARTS E-1 Figures: | | | 1 High Level Waste Tank Configuration | | | 2 Double-Shell Tank Instrumentation Configuration | | | 3 Single-Shell Tank Instrumentation Configuration | | METRIC CONVERSION CHART | | | | | | | | |--|---|--------|--|--|--|--|--| | 1 inch = 2.54 centimeters | | | | | | | | | 1 foot | = 30.48 centimeters | | | | | | | | 1 gallon = 3.79 liters | | | | | | | | | 1 ton = 0.91 metric tons | | | | | | | | | | $^{\circ}\mathbf{F} = \left(\frac{5}{5}\right)$ | °C)+32 | | | | | | | 1 Btu/h = 0.2931 watts (International Table) | | | | | | | | | | | | | | | | | #### WASTE TANK SUMMARY REPORT For Month Ending November 30, 2001 Note: Changes from the previous month are in bold print. #### I. WASTE TANK STATUS | Double-Shell Tanks (DST) | 28 double-shell | 10/86 | |---|--|---------------| | Single-Shell Tanks (SST) | 149 single-shell | 1966 | | Assumed Leaker Tanks | 67 single-shell | 07/93 | | Sound Tanks | 28 double-shell
82 single-shell | 1986
07/93 | | Interim Stabilized Tanks ^a (IS) | 129 single-shell | 06/01 | | Not Interim Stabilized ^b | 20 single-shell | 06/01 | | Isolated -Intrusion Prevention Completed (IP) | 108 single-shell | 09/96 | | Controlled, Clean, and Stable (CCS) | 36 single-shell | 09/96 | | Misc. Underground Storage Tanks and Special Surveillance Facilities (Active) | 10 Tanks East Area
7 Tanks West Area | 03/01 | | Misc. Underground Storage Tanks and Special Surveillance Facilities (Inactive) ^d | 18 Tanks East Area
25 Tanks West Area | 11/01 | ^a Of the 129 tanks classified as Interim Stabilized, 65 are listed as Assumed Leakers. (See Table B-5) #### II. WASTE TANK INVESTIGATIONS This section includes all single- or double-shell tanks or catch tanks which are showing surface level or interstitial liquid level (ILL) decreases, or drywell radiation level increases in excess of established criteria. ## A. <u>Assumed Leakers or Assumed Re-leakers</u>: (See Appendix D for definition of "Re-leaker") This section includes all single- or double-shell tanks or catch tanks for which an off-normal or unusual occurrence report has been issued, or for which a waste tank investigation is in progress, for assumed leaks or re-leaks. Tanks/catch tanks will remain on this list until either ^b Two of these tanks are Assumed Leakers (BY-105 and BY-106). (See Table B-5) ^c The TY tank farm was officially declared Controlled, Clean, and Stable (CCS) in March 1996. The TX tank farm and BX tank farms were declared CCS in September 1996. d Tables C-2 and C-3, the Inactive Underground Storage Tanks (IMUST) now reflect only those tanks managed by CHG. a) completion of Interim Stabilization, b) the updated occurrence report indicates that the tank/catch tank is not an assumed leaker, or c) the investigation is completed. #### B. Tanks with increases indicating possible intrusion: This section includes all single-shell tanks and related receiver tanks for which the surveillance data show that the surface level or ILL has met or exceeded the increase criteria, or are still being investigated. Candidate Intrusion List: As a result of a detailed review of the surface level behavior and physical phenomenon, the four tanks listed below are removed from the Candidate Intrusion List. (Reference D.T. Heimberger to K. M. Hodgson, November 28, 2001, Memo 7G300-01-KMH-001, "Tank Intrusion Evaluation.") Tank 241-B-202 Tank 241-BX-101 Tank 241-BX-103 Tank 241-BY-103 #### III. SURVEILLANCE AND WASTE TANK STATUS HIGHLIGHTS ## A. Single-Shell Tanks Saltwell Jet Pumping (See Table B-1 footnotes for further information) <u>Tank 241-A-101</u> - Pumping began May 6, 2000. No pumping has occurred since August 2000; a total of 14.1 Kgallons has been pumped from this tank since the start of pumping in May 2000. Tank 241-AX-101 - Pumping began July 29, 2000. No pumping occurred between August 2000 and March 2001; pumping began again on March 22, 2001. Pumping was shut down on April 3, 2001, due to a transfer line failure. A total of 21.7 Kgallons has been pumped since the start of pumping in July 2000. Tank 241-BY-105 – Pumping began July 11, 2001. During July, a total of 8.8 Kgallons was pumped from this tank. Pumping was halted in August 2001 due to transfer line leak detectors not meeting all operability requirements of the Technical Safety Requirements. Compensatory actions have been established to allow resumption of pumping. During November 2001 a total of 3.4 Kgallons was pumped from this tank; a total of 12.2 Kgallons has been pumped since the start of pumping in July 2001. Tank 241-BY-106 — Pumping originally started in August 1995 and was halted in October 1995 due to an Unreviewed Safety Question (USQ) evaluation for flammable gas concerns. Pumping was restarted July 11, 2001. Pumping was halted in August 2001 due to transfer line leak detectors not meeting all operability requirements of the Technical Safety Requirements (TSR). Compensatory actions have been established to allow resumption of pumping. Pumping resumed in November 2001. During November 2001 a total of 12.1 Kgallons were pumped from this tank; a total of 82.1 Kgallons has been pumped since the start of pumping in July 2001. Tank 241-S-102 - Pumping problems forced many shutdowns. The pump was replaced and pumping resumed on February 19, 2000. Problems with the new pump forced a shutdown on March 23, 2000. Pumping was interrupted in early June 2000. Pumping was shut down due to equipment failure; the lower piping needs to be replaced. No pumping has occurred since June 2000; a total of 56.8 Kgallons has been pumped from this tank since the start of pumping in March 1999. Tank 241-SX-101 - Pumping began November 22, 2000. The pump failed on December 9, 2000, and pumping was shut down. Pumping resumed in September 2001 following replacement of the saltwell pump and lower piping. Pumping was shut down in November 2001 due to high motor bearing temperature and low pump pressures. A total of 31.8 Kgallons has been pumped from this tank since the start of pumping in November 2000. Tank 241-SX-103 - Pumping began October 26, 2000. Pumping was shut down on April 22, 2001 due to leak detector and subsequent shielding problems in the pump pit. Pumping resumed on September 14, 2001. During November 2001, a total of 1.2 Kgallons was pumped; a total of 127.0 Kgallons has been pumped from this tank since the start of pumping in October 2000. <u>Tank 241-SX-105</u> - Pumping began August 8, 2000. Pumping was shut down in late April 2001 when the saltwell screen in-flow rate was measured at approximately 0.02 GPM. This tank is being evaluated to determine if it can be declared interim stabilized. A total of 152.6 Kgallons has been pumped since the start of pumping in August 2000. <u>Tank 241-U-102</u> - Pumping began January 20, 2000. During September 2001 a total of 200 gallons was pumped; a total of 86.5 Kgallons has been pumped from this tank since the start of pumping in January 2000. This tank was placed in observation mode in September 2001 to evaluate whether interim stabilization has been completed. Tank 241-U-107 — Pumping began September 29, 2001. Pumping was shut down during November 2001 and will remain down until the annual leak test is completed satisfactorily on two transfer lines. No pumping in November 2001. A total of 11.7 Kgallons has been pumped from this tank since the start of pumping in September 2001 (net decrease of zero gallons in September due to equipment/priming flushes).
Tank 241-U-109 - Pumping began March 11, 2000. The saltwell pump was replaced following its failure in December 2000, and pumping was restarted March 30, 2001. The tank was last pumped in September 2001 when 100 gallons were transferred; a total of 78.4 Kgallons has been pumped from this tank since the start of pumping in March 2000. This tank was placed in observation mode in September 2001 to evaluate whether interim stabilization has been completed. #### C. Changes to this Report: Tables C-2 and C-3, Inactive Miscellaneous Underground Storage Tanks (IMUST) and Special Surveillance Facilities, only reflect those facilities managed by CH2MHILL Hanford Group. Table A-1, Inventory and Status by Tank – Double-Shell Tanks, now reflects the maximum volume limits per HNF-SD-WM-SP-012, "Tank Farm Contractor and Utilization Plan," Rev. 3, dated September 27, 2001. See Table A-1 for further details. ## APPENDIX A DOUBLE-SHELL TANKS MONTHLY SUMMARY TABLES TABLE A-1. INVENTORY AND STATUS BY TANK - DOUBLE-SHELL TANKS | | | | | | | L | WASTE VOLUM | ES | | PHOTO | S/VIDEOS | | |--------|------------|--------|---------|--------|--------|--------|-------------|-----------|----------|----------|----------|-----------------| | | | 10.110 | EQUIVA- | | AVAIL. | SUPER- | | | | | | SEE
FOOTNOTE | | | | *** | LENT | TOTAL | SPACE | NATANT | | | SOLIDS | LAST | LAST | FOR | | T44# | TANK | TANK | WASTE | WASTE | (1) | LIQUID | SLUDGE | SALTCAKE | VOLUME | IN-TANK | IN-TANK | THESE | | TANK | INTEGRITY | STATUS | INCHES | (Kgal) | (Kgal) | (Kgal) | (Kgal) | (Kgel) | UPDATE | PHOTO | VIDEO | CHANGES | | | | | | | | AN TAN | K FARM STAT | <u>us</u> | | | | | | N-101 | SOUND | DRCVR | 91.6 | 252 | 892 | 252 | 0 | 0 | 06/30/99 | | | | | N-102 | SOUND | CWHT | 392.7 | 1080 | 64 | 991 | 0 | 89 | 06/30/99 | | | ļ | | N-103 | SOUND | CWHT | 349.1 | 960 | 184 | 501 | 0 | 459 | 08/30/99 | 10/29/87 | | 1 | | NN-104 | SOUND | CWHT | 383.3 | 1054 | 90 | 609 | 0 | 445 | 06/30/99 | 06/19/66 | | | | AN-105 | SOUND | CWHT | 409.8 | 1127 | 17 | 635 | 0 | 492 | 06/30/99 | 01/26/86 | | | | AN-106 | SOUND | CWHT | 13.8 | 38 | 1106 | 21 | 0 | 17 | 06/30/99 | | | l | | N-107 | SOUND | CWHT | 378.5 | 1041 | 103 | 794 | 0 | 247 | 06/30/99 | 09/01/88 | | | | 7 DOL | JBLE-SHELL | TANKS | TOTALS: | 5552 | 2456 | 3803 | 0 | 1749 | | | | | | | | | | | | AP TAN | K FARM STAT | <u>us</u> | | | | | | AP-101 | SOUND | DRCVR | 405.1 | 1114 | 30 | 1114 | 0 | 0 | 05/01/89 | | | 1 | | NP-102 | SOUND | DRCVR | 33.1 | 91 | 1053 | 91 | 0 | 0 | 07/11/89 | | | | | NP-103 | SOUND | DRCVR | 102.2 | 281 | 863 | 281 | 0 | 0 | 05/31/96 | | | 1 | | AP-104 | SOUND | DRCVR | 402.9 | 1108 | 36 | 1108 | 0 | 0 | 10/13/88 | | | | | AP-105 | SOUND | CWHT | 412.0 | 1133 | 11 | 1044 | 0 | 69 | 06/30/99 | | 09/27/95 | | | NP-106 | SOUND | DRCVR | 415.3 | 1142 | 2 | 1142 | o | 0 | 10/13/88 | | | Ì | | AP-107 | SOUND | DRCVR | 354.9 | 976 | 168 | 976 | 0 | 0 | 10/13/88 | | | | | AP-108 | SOUND | DRCVR | 285,5 | 785 | 359 | 785 | 0 | 0 | 10/13/88 | | | | | 6 DOL | BLE-SHELL | TANKS | TOTALS: | 6630 | 2522 | 6541 | 0 | 89 | | | | | | | | | | | | AW TAN | K FARM STAT | <u>us</u> | | | | | | W-101 | SOUND | CWHT | 410.2 | 1128 | 16 | 740 | 0 | 368 | 10/31/00 | 03/17/88 | | l | | W-102 | SOUND | EVFD | 34.2 | 94 | 1034 | 64 | 30 | o | 01/31/01 | 02/02/83 | | | | W-103 | SOUND | DRCVA | 400.7 | 1102 | 42 | 789 | 273 | 40 | 06/30/99 | | | 1 | | W-104 | SOUND | DRCVR | 114.5 | 315 | 829 | 92 | 66 | 157 | 06/30/99 | 02/02/83 | | | | W-105 | SOUND | DRCVR | 154.9 | 426 | 718 | 171 | 255 | 0 | 06/30/99 | | | 1 | | W-106 | SOUND | SACVR | 107.6 | 296 | 848 | 57 | 0 | 239 | 06/30/99 | 02/02/83 | | | | | JBLE-SHELL | TANKS | TOTALS: | 3361 | 3487 | 1913 | 624 | 824 | L | | | | #### TABLE A-1. INVENTORY AND STATUS BY TANK - DOUBLE-SHELL TANKS November 30, 2001 | | | | | | | | WASTE VOLU | MES | | PHOT | OS/VIDEOS | | |---------|-------------------|----------------|------------------------------------|--------------------------|----------------------------------|--------------------------------------|------------------|--------------------|----------------------------|--------------------------|--------------------------|-------------------------------| | TANK | TANK
INTEGRITY | TANK
STATUS | EQUIVA-
LENT
WASTE
INCHES | TOTAL
WASTE
(Kgal) | AVAIL.
SPACE
(1)
(Kgal) | SUPER-
NATANT
LIQUID
(Kgal) | SLUDGE
(Kgal) | SALTCAKE
(Kgal) | SOLIDS
VOLUME
UPDATE | LAST
IN-TANK
PHOTO | LAST
IN-TANK
VIDEO | SEE FOOTNOTI FOR THESE CHANGE | | | | | 4 | | | AY TANI | FARM STAT | <u>us</u> | | | | | | AY-101 | SOUND | DRCVR | 65.5 | 180 | 821 | 84 | 96 | _ о | 06/30/99 | 12/28/82 | | 1 | | AY-102 | SOUND | DRCVR | 225.8 | 621 | 380 | 437 | 184 | 0 | 10/31/00 | 04/26/61 | | | | 2 DO | UBLE-SHELL | TANKS | TOTALS: | 801 | 1201 | 521 | 280 | 0 | | | | | | | | | | | | AZ TANI | FARM STATE | J S | | | | | | AZ-101 | SOUND | CWHT | 360.2 | 963 | 36 | 911 | 52 | _ | 06/30/98 | 06/18/83 | | 1 | | AZ-102 | SOUND | DRCYR | 362.5 | 997 | 4 | 892 | 105 | 0 | 06/30/99 | 10/24/84 | | | | 2 DO | UBLE-SHELL | TANKS | TOTALS: | 1960 | 42 | 1803 | 157 | 0 | | | | | | | | | | | | SY TANK | FARM STATU | JS | | | | | | BY-101 | SOUND | CWHT | 352.4 | 969 | 175 | 694 | 0 | 276 | 06/30/99 | 04/12/89 | | 1 | | BY-102 | SOUND | DRCVR | 370.9 | 1020 | 106 | 949 | 71 | 0 | 06/30/99 | 04/29/81 | | | | BY-103 | SOUND | CWHT | 268.7 | 739 | 405 | 397 | 0 | 342 | 06/30/99 | 10/01/85 | | | | 3 00 | UBLE-SHELL | TANKS | TOTALS: | 2728 | 688 | 2040 | 71 | 617 | | | | | | BRAND 1 | OTAL | | | 21106 | 10274 | 16697 | 1132 | 3279 | | | | | Note: +/- 1 Kgal differences are the result of computer rounding Maximum volume limits per HNF-SD-WM-SP-012, "Tank Farm Contractor and Utilization Plan," Rev. 3, dated September 27, 2001 Tank Farms Exceptions: AN, AP, AW 1144 Kgal AW-102 1128 Kgal AY, AZ 1001 Kgal SY-102 1082 Kgal NOTE: Supernatant + Sludge (includes liquid) + Saltcake (includes liquid) = Total Wasta ⁽¹⁾ Available Space volumes include restricted space #### HNF-EP-0182, REV. 164 ## TABLE A-2. SUMMARY OF WASTE TRANSACTIONS IN THE DOUBLE-SHELL TANK (DST) SYSTEM November 30, 2001 #### All volumes in Kilo-Gallons (Kgals) - The DST system received wests additions from SST pumping, AZ-151, A-350, nitrits, BX-244 (DCRT), & new water in November. - There was a not change of +115,000 gallons in the DST system for November. - The total DST inventory as of November 30, 2001, was 21.108 million gallons. - There were ~41 Kgals of Saltwell Liquid (SWL) pumped to the East Area DSTs (AP-102) in November, which reflect two transfers of BX-244 (DCRT) to AP-102; not the volume pumped from SSTs BY-105 and BY-106 in November. BX-244 is used for interim storage of BY farm stabilization waste. The first BX-244 to AP-102 transfer contained waste from the BY farm that was pumped in July 2001. - There were ~6 Kgals of SWL (1 Kgal SWL + 5 Kgal water) pumped to the Weet Area DSTs (SY-102) in November. - The SWL numbers are preliminary and are subject to change once the system engineers do a validation; the volumes reported contain the actual waste volume plus any water added for dilution and transfer line flushes. - A transfer of ~2,833 gallons of waste was sent from tank AP-108 to tank AP-106 (for transfer pump priming) prior to a transfer of ~520,273 gallons from tank AP-106 to tank AP-106. After the AP-106 to AP-106 transfer, tank AP-106 received ~1,038,950 gallons from Tank AP-102. These transfers free up storage space in AP-102 to now receive and store cross-site transfer and newly generated waste receiots. - The PFP facility sent ~4,000 gallons of waste to DCRT TX-244 for interim storage in November. This waste will be accounted for when TX-244 is transferred to the DST system. TX-244 presently contains ~13,211 gallons of PFP waste and water, plus ~6,000 gallons of waste & water from SWL pumping of tanks T-104 and T-110. - The medimum volume limits for each of the DST's were adjusted in November. These new volume limits are provided by HNF-SD-WM-SP-012, "Tank Farm Contractor and Utilization Plan," Rev. 3, dated September 27, 2001. | NOVEMBER 2001 DST WASTE RECEIPTS | | | | | | | | | |----------------------------------|--------------------------|------------------|-------------|------------------|------------------------------|--|--|--| | FACILITY | GENERATIONS | OTHER GAINS ASSO | CIATED WITH | OTHER LOSSES ASS | OTHER LOSSES ASSOCIATED WITH | | | | | SWL (West) | +6 Kgel (SY-102) | SLURRY | +3 Kgel | SLURRY | -4 Kgal | | | | | SWL (East) | +41 Kgai (AP-102) | CONDENSATE | +13 Kgel | CONDENSATE | -5 Kgel | | | | | Nitrite (NaNO) | +63 Kgel (AY-102) | INSTRUMENTATION | +0 Kgal | INSTRUMENTATION | -0 Kgal | | | | | Tenk Farme | +3 Kgel (AP-102, AW-102) | UNKNOWN | +1 Kgal | UNKNOWN | -6 Kgal | | | | | TOTAL = | +113 Kgel | TOTAL= | +17 Kgal | TOTAL= | -15 Kgal | | | | | | PROJECTED VERSUS ACTUAL WASTE VOLUMES | | | | | | | | |--------|---------------------------------------|-------------------------------------|----------------------------|----------------------|-------------------|---------------------|--|--| | | ACTUAL DST
WASTE RECEIPTS | PROJECTED DST
WASTE RECEIPTS (1) | MISC. DST
CHANGES (+/-) | PROJECTED
WVR (1) | NET DST
CHANGE | TOTAL DST
VOLUME | | | | ост от | 74 | 114 | -5 | 0 | 69 | 20993 | | | | NOV 01 | 113 | 388 | 2 | 0 | 115 | 21108 | | | | DEC 01 | 0 | 647 | O | 0 | 0 | 6 | | | | JAN 02 | 0 | 544 | 0 | 0 | O | 0 | | | | FEB 02 | 0 | 528 | 0 | 0 | 0 | 0 | | | | MAR 02 | 0 | -151 | 0 | 0 | 0 | 0 | | | | APR 02 | 0 | 316 | 0 | 0 | 0 | 0 | | | | MAY 02 | 0 | 185 | 0 | 0 | 0 | 0 | | | | JUN 02 | 0 | 160 | 0 | 0 | 0 | 0 | | | | JUL 02 | 0 | -678 | 0 | 0 | 0 | 0 | | | | AUG 02 | 0 | 168 | 0 | 0 | 0 | 0 | | | | SEP 02 | 0 | 109 | 0 | 0 | 0 | 0 | | | (1): The "PROJECTED DST WASTE RECEIPTS" and "WVR" numbers were updated in November 2001, the projected volumes will be updated as new
and/or more accurate information is obtained. The projected volumes are the most current available, as supplied by cognizant system engineers. | 242-A Evaporator Waste Volume Redu | ection: | |--|--------------| | Cempaign 94-1 (04/15/94 - 06/13/94) | -2417 | | Cempsign 94-2 (09/22/94 - 11/18/94) | -2787 | | Cempaign 95-1 (06/09/95 - 07/26/95) | -2161 | | Campaign 96-1 (05/07/96 - 05/25/96) | -1117 | | Cempaign 97-1 (03/24/97 - 04/02/97) | -351 | | Campaign 97-2 (09/16/97 - 09/30/97) | -0 53 | | Campaign 99-1 (07/24/99 - 08/15/99) | -818 | | Campaign 00-1 (04/20/00 - 05/05/00) | -682 | | Campaign 01-1 (03/13/01 - 03/27/01) | -882 | | Total waste reduction (WVR) since restart on 4/15/94 | -11668 | Table A-3. Double-Shell Tank Space Usage and Inventory by Waste Type November 30, 2001 | TOTAL AVAILAB | ILE DST SPACE | |---------------|---------------| | NON-AGING = | 27378 | | AGING = | 4004 | | TOTAL = | 31382 | ... | MONTHLY INVENTORY | CHANGE | |-----------------------|--------| | INVENTORY ON 10/31/01 | 20993 | | INVENTORY ON 11/30/01 | 21108 | | CHANGE = | 115 | #### Tank Space Usage | UNUSED | TANK | SPACE | CHANG | Ē | |---------------|-------|-------|-------|------| | 10/31/01 TANK | SPACE | | 1 | 8304 | | 11/30/01 TANK | SPACE | | 1 | 0274 | | CHANGE = | | | | -30 | | OPERATION | AL SPACE | |-----------|----------| | AN-101 = | 892 | | AP-108 = | 359 | | AW-102 = | 1034 | | AW-105 = | 718 | | AW-106 = | 848 | | SY-102 = | 57 | | TOTAL = | 3908 | | RESTRICTE | | |-----------|------| | AN-102 = | 64 | | AN-103 = | 184 | | AN-104 = | 90 | | AN-105 = | 17 | | AN-107 = | 103 | | AP-102 = | 1053 | | AP-106 = | 2 | | AW-101 = | 16 | | AZ-101 = | 25 | | AZ-102 = | 5 | | SY-103 = | 405 | | TOTAL = | 1964 | | NON-ALLOCATED SPACE | | |---------------------|-------| | AN-108 = | 1106 | | AP-101 = | 30 | | AP-103 = | 863 | | AP-104 = | 36 | | AP-105 = | 11 | | AP-107 = | 168 | | AW-103 = | 42 | | AW-104 = | 829 | | AY-101 = | 822 | | AY-102= | 320 | | SY-101 | 175 | | TOTAL = | 4402 | | EMERGENCY SPACE | -1144 | | LAW or HLW RETURN | -1144 | | REMAINING SPACE | 1947 | #### Inventory Calculation by Waste Type: | DILUTE SUPERNATAN | T (DN/DC) | |-------------------|-----------| | AN-101 = | 252 | | AP-107 = (DC) | 976 | | AP-108 = | 785 | | AW-102 = | 64 | | AW-104 = | 92 | | AW-105 = | 171 | | AY-101 = (DC) | 83 | | AY-102 = | 497 | | SY-102 = (DC) | 954 | | TOTAL DN/DC = | 3874 | | TOTAL SOLIDS = | 859 | | SLURRY SUPERNATANT | (DSS/DSSF) | |--------------------|------------| | AN-103 = | 501 | | AN-104 = | 606 | | AN-105 = | 635 | | AP-101 = | 1114 | | AP-105 = | 1044 | | AW-101 = | 740 | | AW-103 = | 789 | | AW-106 = | 57 | | TOTAL DSS/DSSF= | 5489 | | TOTAL SOLIDS = | 2425 | | COMPLEXED SUPERN | ATANT (CC) | |------------------|------------| | AN-102 = | 991 | | AN-106 = | 21 | | AN-107 = | 794 | | AP-103 = | 281 | | AP-104 = | 1108 | | SY-101 = | 694 | | SY-103 = | 397 | | TOTAL DC/CC = | 4266 | | TOTAL SOLIDS | 970 | | AGING SUPERNATANT (AW) | | |------------------------|------| | AZ-101 = | 924 | | AZ-102 = | 891 | | TOTAL AW = | 1815 | | TOTAL SOLIDS | 157 | | PHOSPHATE SUPERNATANT (CP) | | |----------------------------|------| | AP-102= | 91 | | AP-106 = | 1142 | | TOTAL CP = | 1233 | | TOTAL SOLIDS | o | Note: Unused Tank Space Change does not equal Monthly inventory Change because the maximum volume limits for the tanks were changed this month (see Table A-1) | GRAND TOTALS | | |-------------------------------|-------| | DILUTE SUPERNATANT (DN/DC) = | 3874 | | SLURRY (DSS/DSSF) = | 5489 | | CONCENTRATED COMPLEXED (CC) = | 4286 | | CONCENTRATED PHOSPHATE (CP) = | 1233 | | AGING SUPERNATANT (AW) = | 1815 | | DST SOLIDS (SL/SC) = | 4411 | | TOTAL = | 21108 | #### TABLE A-4. DOUBLE-SHELL TANKS MONITORING COMPLIANCE STATUS November 30, 2001 #### All Double-Shell Tanks were in compliance this month. | Legend: | | |------------------|--| | O/C | Noncompliance with applicable documentation | | FIC/ENRAF/MT (a) | Surface level measurement devices | | OSD | OSD-T-151-0007, OSD-T-151-00031 | | FSAR/TSR | Final Safety Analysis Report/Technical Safety Requirements | | None | Applicable equipment not installed | | N/A | Not Applicable (not monitored or no monitoring scheduled) | #### (a) ENRAF is a trademark of the ENRAF Corporation, Houston, Texas. #### Notes: Psychrometrics monitoring is on an as needed basis. In-tank photos/videos are taken on an as needed basis. Drywell monitoring is no longer required. ## APPENDIX B SINGLE-SHELL TANKS MONTHLY SUMMARY TABLES TABLE B-1. INVENTORY AND STATUS BY TANK - SINGLE-SHELL TANKS | | | _ | . — — | | | | Novemb | er 30, 2001 | | 741 TO 104 | o oin. | EL IVI | 1120 | | | |-------------------|---------------------|----------------|--------------------------|--------------------------------------|---|-----------------------------------|--------------------------|---|-----------|------------------|------------------------|----------------------------|--------------------------|--------------------------|---| | | | These | volumes | are the r | esult of engi | | | | not agree | with se | fice la | el messe | easeas & | | | | | | | | | octnotes for i | and the second second second | | | | | | | | | | | | | | | | | | | E VOLUMES | | | | | PHOTO | MDEOS | | | TANK
NO. | , TANK
INTEGRITY | TANK
STATUS | TOTAL
WASTE
(Kgel) | SUPER-
NATANT
LKQUID
(Kgal) | DRAINABLE
INTERSTITIAL
LIQUID
(Kgal) | PUMPED
THIS
MONTH
(Kgal) | TOTAL
PUMPED
(Kgañ | DRAINABLE
LIQUID
REMAINING
(Kgall) | LIQUID | SLUDGE
(Kgal) | SALT
CAKE
(Kgal) | SOLIDS
VOLUME
UPDATE | LAST
IN-TANK
PHOTO | LAST
IN-TANK
VIDEO | SEE
FOOTNOTES
FOR
THESE
CHANGES | | | | | | | | | A TANKI | 'ARM STATU | J\$ | | | | | | | | A-101 | SOUND | /PI | 677 | (a) | (a) | 0.0 | 14.1 | (a) | (a) | 3 | 380 | 09/30/99 | 08/21/85 | | (a) | | A-102 | SOUND | IS/PI | 41 | 4 | 8 | 0.0 | 39.5 | 12 | 4 | 15 | 22 | 07/27/89 | 07/20/89 | | | | A-103 | ASMD LKR | IS/IP | 371 | 5 | 45 | 0.0 | 111.0 | 50 | 43 | 366 | 0 | 06/03/86 | 12/28/86 | | | | A-104 | ASMD LKR | IS/IP | 28 | 0 | 4 | 0.0 | 0.0 | 4 | 0 | 28 | 0 | 01/27/78 | 06/25/86 | | | | A-105 | ASMD LKR | IS/IP | 37 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 37 | 0 | 10/31/00 | 08/20/86 | | ì | | A-106 | SOUND | IS/IP | 125 | 0 | 9 | 0.0 | 0.0 | 9 | 1 | 125 | 0 | 09/07/82 | 08/19/86 | | | | 6 TANK | S - TOTALS | <u> </u> | 1479 | | | | | | | 574 | 402 | | | | | | | - | | | | | A | X TANK | FARM STAT | US | | | | | | | | AX-101 | SOUND | /PI | 662 | (b) | (b) | 0. 0 | 21.7 | (b) | (P) | 3 | 295 | 09/30/99 | 08/18/87 | | (a) | | AX-102 | ASMD LKR | IS/IP | 30 | | 7 | 0.0 | 13.0 | 7 | 0 | 7 | 23 | 08/30/99 | 06/05/88 | | ļ — | | AX-103 | SOUND | IS/IP | 112 | 0 | 23 | 0.0 | 0.0 | 23 | 11 | 8 | 104 | 06/30/99 | 06/13/87 | | i | | AX-104 | ASMD LKR | IS/IP | 8 | ٥ | 1 | 0.0 | 0.0 | 1 | 0 | 8 | 0 | 06/30/99 | 08/18/87 | | | | 4 TANK | S - TOTALS | | 812 | | | | | | | 26 | 422 | | | | | | | | | | | |] | TANK P | 'ARM STATU | is | | | | | | | | B-101 | ASMD LKR | IS/IP | 113 | 0 | 24 | 0.0 | 0.0 | 24 | | | 113 | 06/30/99 | 05/19/83 | | i | | B-102 | SOUND | IS/IP | 32 | 4 | 7 | 0.0 | 0.0 | 11 | 4 | 0 | 28 | 06/30/99 | 08/22/86 | | 1 | | 5-103 | ASMD LKR | IS/IP | 59 | 0 | 11 | 0.0 | 0.0 | 11 | 3 | 0 | 59 | 06/30/99 | 10/13/86 | | 1 | | B-104 | SOUND | IS/IP | 371 | 1 | 45 | 0.0 | 0.0 | 46 | 42 | 309 | 61 | 06/30/09 | 10/13/86 | | f | | -105 | ASMD LKR | 1S/IP | 158 | 0 | 20 | 0.0 | 0.0 | 20 | 15 | 28 | 130 | 06/30/99 | 05/19/86 | | Į | | B-106 | SOUND | IS/IP | 117 | 1 | 25 | 0.0 | 0.0 | 26 | 19 | 0 | 116 | 02/29/00 | 02/28/86 | | | | B-107 | ASMD LKR | IS/IP | 165 | 1 | 22 | 0.0 | 0.0 | 23 | 19 | 93 | 71 | 06/30/99 | 02/28/66 | | | | 108 | SOUND | IS/IP | 84 | 0 | 15 | 0.0 | 0.0 | 15 | 11 | 53 | 41 | 06/30/99 | 05/10/86 | | | | 3-10 9 | SOUND | IS/IP | 127 | 0 | 21 | 0.0 | 0.0 | 21 | 17 | 63 | 64 | 06/30/99 | 04/02/85 | | | | -110 | ASMD LKR | IS/IP | 246 | 1 | 27 | 0.0 | 0.0 | 28 | 20 | 245 | 0 | 02/28/85 | 03/17/86 | | | | 5-111 | ASMD LKR | IS/IP | 237 | 1 | 23 | 0.0 | 0.0 | 24 | 29 | 236 | 0 | 06/28/86 | 06/26/85 | | | | 5 -112 | ASMD LKR | IS/IP | 33 | 3 | 4 | 0.0 | 0.0 | 7 | 3 | 30 | 0 | 05/31/65 | 05/29/66 | | Į. | | B-201 | ASMD LKR | 1S/IP | 29 | , | 4 | 0.0 | 0.0 | 5 | 1 | 28 | 0 | 04/26/82 | | 06/23/95 | | | B-202 | SOUND | IS/IP | 27 | 0 | 4 | 0.0 | 0.0 | 4 | 0 | 27 | 0 | 05/31/85 | | 06/15/95 | | | 3-203 | ASMD LKR | IS/IP | 51 | 1 | 5 | 0.0 | 0.0 | 6 | 1 | 50 | 0 | 05/31/84 | 11/13/86 | | 1 | | B-204 | ASMD LKR | 15/IP | 50 | 1 | 5 | 0.0 | 0.0 | 6 | 1 | 49 | 0 | 05/31/84 | 10/22/87 | | | | 16 TANK | (S - TOTALS | | 1909 | | | | | | | 1211 | 683 | | | | 1 | TABLE B-1. INVENTORY AND STATUS BY TANK - SINGLE-SHELL TANKS | | | These y | olumes : | ne the n | sult of engi | DECTING (| al(alai) | ons and ma | y not agree | with an | riace le | el mes | n elem | | | |---------|-------------|-----------|----------------|----------------------------|-------------------------------------|-------------------------|-----------------|----------------------------------|-------------|----------|----------|--|-----------------|-----------------|----------------------------------| | | | | | Sec for | otnotes for i | efermali | m on la | iks in proc | ss of inter | ia Siati | lizativa | | | | | | | | | | | | | WASTE \ | /OLUMES | | | | | PHOTO | S/VIDEOS | | | TANK | TANK | TANK | TOTAL
WASTE | SUPER-
NATANT
LIQUID | DRAINABLE
INTERSTITIAL
LIQUID | PUMPED
THIS
MONTH | TOTAL
PUMPED | DRAINABLE
LIQUID
REMAINING | LIQUID | SLUDGE | SALT | SOLIDS
VOLUME |
LAST
IN-TANK | LAST
IN-TANK | SEE
FOOTNOTES
FOR
THESE | | NO. | INTEGRITY | STATUS | (Kgel) | (Kgal) | (Kgal) | (Kgal) | (Kgal) | (Kgel) | (Kgal) | (Kgal) | (Kgal) | UPDATE | PHOTO | VIDEO | CHANGES | | | | | | | | вх | TANK | ARM STATI | JS | | | | | | | | BX-101 | ASMD LKR | IS/IP/CCS | 43 | 1 1 | 4 | 0.0 | 0.0 | 6 | | 42 | 0 | 04/26/82 | 11/24/88 | 11/10/94 | l | | 8X-102 | ASMO LKR | IS/IP/CCS | 96 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 96 | 0 | 04/26/62 | 09/18/85 | | ļ | | BX-103 | SOUND | IS/IP/CCS | 71 | | 4 | 0.0 | 0.0 | 13 | 9 | 62 | 0 | 11/29/83 | 10/31/86 | 10/27/94 | | | BX-104 | SOUND | IS/IP/CCS | 93 | 3 | 4 | 0.0 | 17.4 | 7 | 3 | 90 | 0 | 02/29/00 | 09/21/89 | | l | | BX-105 | SOUND | IS/IP/CCS | 51 | 6 | 4 | 0.0 | 15.0 | 9 | 5 | 46 | 0 | 06/30/99 | 10/23/86 | | | | BX-106 | SOUND | IS/IP/CCS | 30 | 0 | 4 | 0.0 | 14.0 | 4 | 0 | 38 | 0 | 06/01/95 | 06/19/88 | 07/17/95 | 1 | | BX-107 | SOUND | IS/IP/CCS | 345 | 1 | 36 | 0.0 | 23.1 | 37 | 33 | 344 | 0 | 09/16/90 | 09/11/90 | | | | BX-108 | ASMD LKR | IS/IP/CCS | 26 | 0 | 4 | 0.0 | 0.0 | 4 | 0 | 26 | 0 | 07/31/79 | 05/05/94 | | | | BX-109 | SOUND | IS/IP/CCS | 193 | ٥ | 25 | 0.0 | 8.2 | 25 | 20 | 193 | 0 | 09/17/90 | 09/11/90 | | 1 | | BX-110 | ASMD LKR | IS/IP/CCS | 207 | 3 | 28 | 0.0 | 1.5 | 31 | 26 | 133 | 71 | 06/30/99 | 07/15/94 | 10/13/94 | | | BX-111 | ASMD LKR | IS/IP/CCS | 162 | 1 | 5 | 0.0 | 116.9 | 6 | 2 | 25 | 136 | 06/30/99 | 05/19/94 | 02/26/95 | | | BX-112 | SOUND | IS/IP/CCS | 165 | 1 | . 9 | 0.0 | 4.1 | 10 | 7 | 164 | 0 | 09/17/90 | 09/11/90 | | | | 12 TAN | CS - TOTALS | | 1490 | | | | | * | | 1259 | 207 | | | | | | | | | | | | 21 | TANK F | ARM STATU | is | | | | - | | | | BY-101 | SOUND | 15/IP | 367 | 1 0 | 28 | 0.0 | 35.8 | 28 | 24 | 109 | 278 | 05/30/84 | 09/19/89 | | 1 | | BY-102 | SOUND | IS/PI | 277 | ō | 40 | 0.0 | 159.0 | 40 | 33 | 0 | 277 | | 09/11/87 | 04/11/95 | 1 | | BY-103 | ASMD LKR | IS/PI | 400 | 0 | 58 | 0.0 | 95.9 | 58 | 53 | | 391 | | 09/07/89 | | | | BY-104 | SOUND | IS/IP | 326 | 0 | 40 | 0.0 | 329.5 | 40 | 36 | 150 | 176 | 06/30/99 | | ,, | | | BY-106 | ASMD LKR | /P1 | 491 | (c) | (c) | 3.4 | 12.2 | (c) | (c) | 48 | 443 | 11/30/01 | | | (c) | | BY-106 | ASMD LKR | /PI | 544 | (d) | (d) | 12.1 | 82.1 | (d) | (d) | 84 | 480 | 11/30/01 | | | (d) | | BY-107 | ASMD LKR | IS/IP | 266 | 0 | 39 | 0.0 | 56.4 | 39 | 35 | 40 | 226 | | 10/15/86 | | l '-' | | BY-108 | ASMD LKR | IS/IP | 228 | 0 | 33 | 0.0 | 27.5 | 33 | 26 | 154 | 74 | | 10/15/86 | | | | BY-109 | SOUND | IS/PI | 290 | 0 | 31 | 0.0 | 167.1 | 31 | 26 | 57 | 233 | • | 06/18/97 | | | | BY-110 | SOUND | IS/IP | 398 | 0 | 21 | 0,0 | 213.3 | 21 | 17 | 103 | 295 | | 07/26/84 | | ŀ | | BY-111 | SOUND | IS/IP | 459 | 0 | 14 | 0.0 | 313.2 | 14 | 6 | 0 | 459 | 06/30/99 | 10/31/86 | | [| | BY-112 | SOUND | IS/IP | 291 | 0 | 24 | 0.0 | 116.4 | 24 | 12 | 0 | 291 | | 04/14/66 | | | | 12 TANK | S - TOTALS | | 4357 | | | | | | | 754 | 3603 | | | | | TABLE B-1. INVENTORY AND STATUS BY TANK - SINGLE-SHELL TANKS | TANK | | | | | | connotes for i | H (E BH) E | on on in | | essici el liber | | rearion | | | | | |--|-------------|-------------|-------|-------|--------------|----------------|-------------|----------|-----------|-----------------|---------------|---------|----------|----------|----------|----------| | Superal Color Co | | | | | | | | WASTE \ | OLUMES | | | | | PHOTOS | VIDEOS | | | TANK TANK TANK WASTE LIQUID DIQUID MONTH PLUMPED REMARNING REMARKING | | | | TOTAL | | | | TOTAL | | | | PALT | eou me | LAST | LACT | FOOTNOTE | | NO. NTEGRITY STATUS Kg all | TANK | TANK | TANK | _ | | | | | | | e i i i i i i | _ | | | | 1 | | C TANK FARM STATUS | NO. | | | | | | | | | | 1 | | - | | | CHANGES | | 101 ASMO LICR IS/IP 88 0 | | | | | | | | | | | | | | | | | | 103 SOUND PF 198 79 | >101 | ASMD LKR | IS/IP | 88 | ۱ ، | 4 | _ | | | _ | 88 | 0 | 11/29/83 | 11/17/87 | | I | | 104 SOUND IS/IP 283 0 0 0.0 0.0 0 0 283 0 02/21/00 07/25/90 105 SOUND IS/IP 132 0 20 0.0 0.0 20 0 132 0 02/21/00 06/05/44 06/30/95 106 SOUND IS/IP 48 42 0 0.0 0.0 40.8 30 25 257 0 06/20/95 06/05/44 06/20/95 107 SOUND IS/IP 66 0 4 0.0 0.0 4 0 68 0 02/24/85 0/27/86 109 SOUND IS/IP 66 4 4 0.0 0.0 8 4 62 0 11/28/83 01/30/76 110 ASMD LKR IS/IP 176 1 37 0.0 15.5 38 30 177 0 06/14/85 06/12/86 111 ASMD LKR IS/IP 57 0 4 0.0 0.0 6 1 104 0 09/18/80 02/25/70 02/02/95 112 SOUND IS/IP 104 0 6 0.0 0.0 6 1 104 0 09/18/80 02/25/70 02/02/95 112 SOUND IS/IP 2 0 0 0.0 0.0 0 0 2 0 0/3/31/82 12/02/88 202 ASMD LKR IS/IP 2 0 0 0.0 0.0 0 0 2 0 0/3/31/82 12/02/88 203 ASMD LKR IS/IP 5 0 0 0.0 0.0 0 0 0 0 0 | -102 | SOUND | IS/IP | 316 | 0 | 62 | 0.0 | 46.7 | 62 | 55 | 316 | 0 | 09/30/95 | 06/18/76 | 06/24/95 | | | 105 SOUND IS/P 1 32 0 20 0.0 0.0 20 0 132 0 02/28/00 08/05/94 08/30/95 106 SOUND IF 48 42 0 0.0 0.0 42 9 6 0 10/31/96 08/05/94 08/06/95 107 SOUND IS/P 257 0 30 0.0 40.8 30 25 257 0 09/30/95 09/00/00 108 SOUND IS/P 66 0 4 0.0 0.0 4 0 66 0 02/24/94 12/05/74 11/17/94 1109 SOUND IS/P 66 4 4 0.0 0.0 8 4 62 0 11/28/83 01/30/76 11/30/76 | -103 | SOUND | /PI | 198 | 79 | 18 | 0.0 | 0.0 | 97 | 83 | 119 | 0 | 12/31/98 | 07/28/87 | | | | 106 SOUND /P 48 42 0 0.0 0.0 42 9 6 0 10/31/99 08/05/94
08/05/94 08/05/94 08/05/94 08/05/94 08/05/94 08/05/94 08/05/94 08/05/94 08/05/94 08/05/94 08/05/94 08/05/94 08/05/94 08/05/94 08/05/94 0 | -104 | SOUND | IS/IP | 263 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 263 | 0 | 02/01/00 | 07/25/90 | | | | 107 SOUND 15/IP 257 0 30 0.0 40.8 30 25 257 0 06/30/99 00/00/00 10/8 50UND 15/IP 66 0 4 0.0 0.0 40.8 30 25 257 0 06/30/99 00/00/00 10/8 109 SOUND 15/IP 66 0 4 0.0 0.0 4 0 66 0 02/24/84 12/05/74 11/17/9 | -105 | SOUND | IS/P1 | 132 | 0 | 20 | 0.0 | 0.0 | 20 | 0 | 132 | 0 | 02/29/00 | 06/05/94 | 08/30/95 | | | 108 SOUND IS/IP 66 0 4 0.0 0.0 4 0 68 0 02/24/84 12/05/74 11/17/94 109 SOUND IS/IP 66 4 4 0.0 0.0 8 4 62 0 11/28/83 01/30/76 11/0 ASMD LKR IS/IP 178 1 37 0.0 15.5 38 30 177 0 06/14/95 06/12/80 05/23/95 111 ASMD LKR IS/IP 57 0 4 0.0 0.0 4 0 57 0 06/14/95 06/12/80 05/23/95 111 ASMD LKR IS/IP 57 0 4 0.0 0.0 4 0 57 0 06/14/95 06/12/80 05/23/95 1112 SOUND IS/IP 104 0 6 0.0 0.0 6 1 104 0 09/18/90 09/18/90 201 ASMD LKR IS/IP 2 0 0 0.0 0.0 0 0 1 104 0 09/18/90 09/18/90 202 ASMD LKR IS/IP 1 0 0 0.0 0.0 0 0 1 0 01/18/79 12/02/86 202 ASMD LKR IS/IP 5 0 0 0.0 0.0 0 0 0 1 0 01/18/79 12/02/86 204 ASMD LKR IS/IP 3 0 0 0.0 0.0 0 0 0 5 0 04/28/82 12/09/86 204 ASMD LKR IS/IP 3 0 0 0.0 0.0 0 0 0 3 0 04/28/82 12/09/86 204 ASMD LKR IS/IP 3 0 0 0.0 0.0 0 0 0 3 0 04/28/82 12/09/86 204 ASMD LKR IS/IP 3 0 0 0.0 0.0 0 0 0 3 0 04/28/82 12/09/86 204 ASMD LKR IS/IP 3 0 0 0.0 0.0 0 0 0 3 0 04/28/82 12/09/86 204 ASMD LKR IS/IP 3 0 0 0.0 0.0 0 0 0 0 3 0 04/28/82 12/09/86 204 ASMD LKR IS/IP 3 0 0 0.0 0.0 0 0 0 0 3 0 04/28/82 12/09/86 204 ASMD LKR IS/IP 3 0 0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 | -106 | SOUND | /Pt | 48 | 42 | 0 | 0.0 | 0.0 | 42 | 9 | 6 | 0 | 10/31/99 | 06/05/94 | 06/06/94 | l | | 109 SOUND IS/IP 66 4 4 0.0 0.0 8 4 62 0 11/28/83 01/30/76 110 ASMD LKR IS/IP 178 1 37 0.0 15.5 38 30 177 0 06/14/95 06/12/95 111 ASMD LKR IS/IP 57 0 4 0.0 0.0 4 0 67 0 04/28/82 02/25/70 02/20/295 112 SOUND IS/IP 104 0 6 0.0 0.0 0 6 1 104 0 09/18/90 09/18/90 201 ASMD LKR IS/IP 2 0 0 0.0 0.0 0 0 2 0 03/31/82 12/02/96 202 ASMD LKR IS/IP 5 0 0 0.0 0.0 0 0 1 0 01/18/79 12/08/96 203 ASMD LKR IS/IP 5 0 0 0.0 0.0 0 0 5 0 04/28/82 12/09/96 204 ASMD LKR IS/IP 3 0 0 0.0 0.0 0 0 3 0 04/28/82 12/09/96 3 TANK FARM STATUS 1784 1058 0 1055 367 06/31/00 03/18/96 4 ASMD LKR IS/IP 237 1 45 0.0 23.9 46 39 9 227 04/30/00 06/01/80 01/28/00 104 ASMD LKR IS/IP 237 1 45 0.0 23.9 46 39 9 227 04/30/00 06/01/80 01/28/00 105 SOUND IS/IP 456 0 42 0.0 114.3 42 33 2 454 09/28/80 04/12/80 106 SOUND IS/IP 456 0 42 0.0 114.3 42 33 2 454 09/28/80 04/12/80 108 SOUND IS/IP 376 14 61 0.0 0.0 75 61 28.3 69 08/30/99 03/12/87 12/03/96 109 SOUND IS/IP 333 0 18 0.0 0.0 34.0 18 12 13 520 08/30/99 03/12/87 12/03/96 110 SOUND IS/IP 333 0 18 0.0 0.0 34.0 18 12 13 520 08/30/99 03/12/87 12/03/96 111 SOUND IS/IP 390 0 30 0.0 20.1 30 27 131 259 06/14/92 03/12/87 12/11/96 111 SOUND IS/IP 533 0 81 0.0 125.1 81 70 6 617 12/31/99 03/12/87 12/11/96 111 SOUND IS/IP 533 0 81 0.0 125.1 81 70 6 617 12/31/99 03/12/87 12/11/96 111 SOUND IS/IP 530 0 81 0.0 125.1 81 70 6 617 12/31/99 03/12/87 12/11/96 111 SOUND IS/IP 533 0 81 0.0 125.1 81 70 6 617 | >107 | SOUND | IS/IP | 257 | 0 | 30 | 0.0 | 40.B | 30 | 25 | 257 | 0 | 06/30/99 | 00/00/00 | • | [| | 110 ASMD LKR 15/IP 178 1 37 0.0 15.5 38 30 177 0 06/14/95 06/23/95 111 ASMD LKR 15/IP 57 0 4 0.0 0.0 4 0 67 0 04/24/92 02/25/70 02/02/95 1112 SOUND IS/IP 104 0 6 0.0 0.0 6 1 104 0 09/18/90 09/18/90 2018/90 2018/90 12/02/96 202 ASMD LKR 15/IP 1 0 0 0 0.0 0.0 0 0 0 2 0 03/31/92 12/02/96 202 ASMD LKR 15/IP 1 0 0 0 0.0 0.0 0 0 0 1 0 01/19/79 12/09/96 203 ASMD LKR 15/IP 1 0 0 0 0.0 0.0 0 0 0 1 0 01/19/79 12/09/96 203 ASMD LKR 15/IP 3 0 0 0.0 0.0 0 0 0 5 0 04/28/92 12/09/96 204 ASMD LKR 15/IP 3 0 0 0.0 0.0 0 0 0 0 1 0 01/19/79 12/09/96 204 ASMD LKR 15/IP 3 0 0 0.0 0.0 0 0 0 0 1 0 0 04/28/92 12/09/96 204 ASMD LKR 15/IP 3 0 0 0.0 0.0 0 0 0 0 1 0 0 04/28/92 12/09/96 205 205 205 205 205 205 205 205 205 205 | >108 | SOUND | 15/IP | 66 | 0 | 4 | 0.0 | 0.0 | 4 | 0 | 66 | 0 | 02/24/84 | 12/05/74 | 11/17/94 | | | 111 ASMD LKR IS/IP 57 0 4 0.0 0.0 4 0 67 0 04/28/82 02/25/70 02/02/95 112 SOUND IS/IP 104 0 6 0.0 0.0 6 1 104 0 09/18/90 09/18/90 201 ASMD LKR IS/IP 2 0 0 0.0 0.0 0 0 2 0 03/31/82 12/02/86 202 ASMD LKR IS/IP 1 0 0 0.0 0.0 0 0 1 0 01/19/79 12/08/86 203 ASMD LKR IS/IP 5 0 0 0.0 0.0 0 0 0 1 0 01/19/79 12/08/86 204 ASMD LKR IS/IP 3 0 0 0.0 0.0 0 0 0 3 0 04/28/82 12/09/86 8 TANKS - TOTALS 1784 168 0 168 | -109 | SOUND | IS/IP | 66 | 4 | 4 | 0.0 | 0.0 | 8 | 4 | 62 | 0 | 11/29/83 | 01/30/76 | | | | 112 SOUND S/IP 104 0 6 0.0 0.0 6 1 104 0 09/18/90 09/18/90 201 ASMD LKR S/IP 2 0 0 0.0 0.0 0 0 2 0 03/31/82 202 ASMD LKR S/IP 1 0 0 0.0 0.0 0 0 1 0 01/19/79 203 ASMD LKR S/IP 6 0 0 0.0 0.0 0 0 0 5 0 04/28/82 204 ASMD LKR S/IP 3 0 0 0.0 0.0 0 0 0 3 0 04/28/82 204 ASMD LKR S/IP 3 0 0 0.0 0.0 0 0 0 3 0 04/28/82 205 ASMD LKR S/IP 3 0 0 0.0 0.0 0 0 0 0 0 | >110 | ASMD LKR | IS/IP | 178 | 1 | 37 | 0.0 | 15.5 | 38 | 30 | 177 | 0 | 06/14/95 | 06/12/86 | 05/23/95 |] | | 201 ASMD LKR IS/IP 2 0 0 0.0.0 0.0 0.0 0 0 2 0 03/31/82 12/02/86 202 ASMD LKR IS/IP 1 0 0 0.0.0 0.0 0 0 1 0 01/19/79 12/09/86 203 ASMD LKR IS/IP 5 0 0 0.0.0 0.0 0 0 5 0 04/28/82 12/09/86 204 ASMD LKR IS/IP 3 0 0 0.0.0 0.0 0 0 5 0 04/28/82 12/09/86 204 ASMD LKR IS/IP 3 0 0 0.0.0 0.0 0 0 0 5 0 04/28/82 12/09/86 204 ASMD LKR IS/IP 3 0 0 0.0.0 0.0 0 0 0 3 0 04/28/82 12/09/86 204 ASMD LKR IS/IP 3 0 0 0.0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | >111 | ASMD LKR | IS/IP | 57 | 0 | 4 | 0.0 | 0.0 | 4 | 0 | 67 | 0 | 04/28/82 | 02/25/70 | 02/02/95 | 1 | | 202 ASMD LKR IS/IP 1 0 0 0.0 0.0 0.0 0 0 1 0 01/19/79 12/09/86 203 ASMD LKR IS/IP 5 0 0 0.0 0.0 0.0 0 0 5 0 04/28/82 12/09/86 204 ASMD LKR IS/IP 3 0 0 0.0 0.0 0.0 0 0 3 0 04/28/82 12/09/86 8 TANKS - TOTALS 1784 1658 0 STANK FARM STATUS 101 SOUND /P1 427 12 83 0.0 0.0 95 80 211 204 12/31/86 03/18/86 102 SOUND /P1 492 (e) (e) 0.0 56.8 (e) (e) 105 387 05/31/00 03/18/86 (e) 103 SOUND IS/P1 237 1 45 0.0 23.9 46 39 9 227 04/30/00 06/01/89 01/28/00 104 ASMD LKR IS/IP 294 1 34 0.0 0.0 35 31 293 0 12/20/84 12/12/84 105 SOUND IS/IP 456 0 42 0.0 114.3 42 33 2 454 09/28/88 04/12/89 106 SOUND IS/IP 456 0 26 0.0 23.6 26 2 0 455 02/28/01 03/17/89 01/28/00 107 SOUND IS/IP 456 0 26 0.0 203.6 26 2 0 455 02/28/01 03/17/89 01/28/00 107 SOUND IS/IP 432 0 0 0.0 199.8 0 0 5 427 10/01/99 03/12/87 12/03/96 109 SOUND IS/IP 533 0 16 0.0 34.0 16 12 13 520 06/30/01 12/31/96 110 SOUND IS/IP 533 0 16 0.0 34.0 16 12 13 520 06/30/01 12/31/98 110 SOUND IS/IP 533
0 16 0.0 34.0 16 12 13 520 06/30/01 12/31/98 110 SOUND IS/IP 533 0 16 0.0 34.0 16 12 13 520 06/30/01 12/31/98 110 SOUND IS/IP 533 0 16 0.0 33.3 130 97 116 337 09/30/99 06/10/99 111 SOUND /P1 523 0 81 0.0 126.1 81 70 6 6 617 12/31/98 03/24/87 | >112 | SOUND | IS/IP | 104 | 0 | 6 | 0.0 | 0.0 | 6 | 1 | 104 | 0 | 09/18/90 | 09/18/90 | | | | 203 ASMD LKR IS/IP 3 0 0 0.0 0.0 0 0 5 0 04/28/82 12/09/96 204 ASMD LKR IS/IP 3 0 0 0.0 0.0 0 0 0 3 0 04/28/82 12/09/96/96/96/96/96/96/96/96/96/96/96/96/96 | -201 | ASMD LKR | IS/IP | 2 | 0 | . 0 | 0.0 | 0.0 | 0 | o | 2 | 0 | 03/31/82 | 12/02/86 | | ł | | 204 ASMD LKR IS/IP 3 0 0 0.0 0.0 0 0 0 3 0 04/28/82 12/09/86 8 TANKS - TOTALS 1784 1658 0 S TANK FARM STATUS 101 SOUND /PI 427 12 83 0.0 0.0 95 80 211 204 105/31/09 03/18/86 102 SOUND /PI 482 (e) (e) 0.0 56.8 (e) (e) 105 387 05/31/00 03/18/86 (e) 103 SOUND IS/PI 237 1 45 0.0 23.9 46 39 9 227 04/30/00 06/01/89 01/28/00 104 ASMD LKR IS/IP 294 1 34 0.0 0.0 35 31 293 0 12/20/84 12/12/84 105 SOUND IS/IP 456 0 42 0.0 114.3 42 33 2 454 09/28/88 04/12/89 106 SOUND IS/IP 456 0 26 0.0 203.6 26 2 0 455 02/28/01 03/17/89 01/28/00 107 SOUND IS/IP 376 14 61 0.0 0.0 75 61 293 69 06/30/99 03/12/87 108 SOUND IS/IP 432 0 0 0.0 199.8 0 0 5 427 10/01/99 03/12/87 12/03/96 109 SOUND IS/IP 533 0 16 0.0 34.0 16 12 13 520 06/30/99 03/12/87 12/03/96 110 SOUND IS/IP 390 0 30 0.0 203.1 30 27 131 258 06/14/92 03/12/87 12/11/96 111 SOUND /PI 501 48 82 0.0 3.3 130 97 116 337 08/30/99 08/10/89 112/31/98 03/24/87 | -202 | ASMD LKR | IS/IP | 1 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 1 | 0 | 01/19/79 | 12/09/66 | | | | STANKS - TOTALS 1784 STANK FARM STATUS 101 SOUND | -203 | ASMD LKR | 1S/IP | 5 | ٥ | 0 | Q.D | 0.0 | 0 | 0 | 5 | 0 | 04/28/82 | 12/09/86 | | | | S TANK FARM STATUS 101 SOUND | >204 | ASMD LKR | IS/IP | 3 | 0 | 0 | 0.0 | 0.0 | 0 | 0 |]. з | 0 | 04/26/82 | 12/09/86 | | | | 101 SOUND | 16 TAN | KS - TOTALS | | 1784 | | | | | | | 1658 | 0 | | | | | | 102 SOUND /PI 492 (e) (e) 0.0 56.8 (e) (e) 105 367 05/31/00 03/18/86 (e) 103 SOUND IS/PI 237 1 45 0.0 23.9 46 39 9 227 04/30/00 06/01/89 01/26/00 104 ASMD LKR IS/IP 294 1 34 0.0 0.0 35 31 293 0 12/20/84 12/12/84 105 SOUND IS/IP 456 0 42 0.0 114.3 42 33 2 454 09/26/88 04/12/89 106 SOUND IS/PI 456 0 26 0.0 203.6 26 2 0 455 02/28/01 03/17/89 01/26/00 107 SOUND /PI 376 14 61 0.0 0.0 75 61 293 69 06/30/99 03/12/87 108 SOUND IS/PI 432 0 0 0.0 199.8 0 0 5 427 10/01/99 03/12/87 12/03/96 109 SOUND IS/PI 533 0 16 0.0 34.0 16 12 13 520 06/30/01 12/31/96 110 SOUND IS/PI 390 0 30 0.0 203.1 30 27 131 259 05/14/92 03/12/87 12/11/96 111 SOUND /PI 501 48 82 0.0 3.3 130 97 116 337 09/30/99 08/10/89 112 SOUND /PI 523 0 81 0.0 125.1 81 70 6 517 12/31/98 03/24/87 | | "- " | | | | , | S | TANK F | ARM STATU | is | | | | | | | | 103 SOUND IS/PI 237 1 45 0.0 23.9 46 39 9 227 04/30/00 06/01/89 01/26/00 104 ASMD LKR IS/IP 294 1 34 0.0 0.0 35 31 293 0 12/20/84 12/12/84 105 SOUND IS/IP 456 0 42 0.0 114.3 42 33 2 454 09/26/88 04/12/89 108 SOUND IS/PI 455 0 26 0.0 203.6 26 2 0 455 02/28/01 03/17/89 01/26/00 107 SOUND IS/PI 376 14 61 0.0 0.0 75 61 293 69 06/30/99 03/12/87 108 SOUND IS/PI 432 0 0 0.0 199.8 0 0 5 427 10/01/99 03/12/87 12/03/96 109 SOUND IS/PI 533 0 16 0.0 34.0 16 12 13 520 06/30/01 12/31/96 110 SOUND IS/PI 390 0 30 0.0 203.1 30 27 131 259 05/14/92 03/12/87 12/11/96 111 SOUND /PI 501 48 82 0.0 3.3 130 97 116 337 09/30/99 08/10/89 112 SOUND /PI 523 0 81 0.0 125.1 81 70 6 517 12/31/98 03/24/87 | -101 | SOUND | /PI | 427 | 12 | 63 | 0.0 | 0.0 | 95 | 80 | 211 | 204 | 12/31/96 | 03/18/86 | | 1 | | 104 ASMD LKR IS/IP 294 1 34 0.0 0.0 35 31 293 0 12/20/84 12/12/84 105 80UND IS/IP 456 0 42 0.0 114.3 42 33 2 454 09/26/88 04/12/89 108 SOUND IS/IP 456 0 26 0.0 203.6 26 2 0 455 02/28/01 03/17/89 01/28/00 107 SOUND /PI 376 14 61 0.0 0.0 75 61 293 69 06/30/99 03/12/87 108 SOUND IS/IP 432 0 0 0.0 199.8 0 0 5 427 10/01/99 03/12/87 109 SOUND IS/IP 533 0 16 0.0 34.0 16 12 13 520 06/30/01 12/31/96 110 SOUND IS/IP 390 0 30 0.0 203.1 30 27 131 259 05/14/92 03/12/87 12/11/96 111 SOUND /PI 501 48 82 0.0 3.3 130 97 116 337 09/30/99 08/10/89 112 SOUND /PI 523 0 81 0.0 125.1 81 70 6 517 12/31/98 03/24/87 | -102 | SOUND | /PI | 492 | (e) | (e) | 0.0 | 56.8 | (e) | (a) | 105 | 367 | 05/31/00 | 03/18/96 | | (e) | | 105 SOUND IS/IP 456 0 42 0.0 114.3 42 33 2 454 09/26/86 04/12/89 108 SOUND IS/IP 455 0 26 0.0 203.6 26 2 0 455 02/28/01 03/17/80 01/28/00 107 SOUND /PI 376 14 61 0.0 0.0 75 61 293 69 06/30/99 03/12/87 108 SOUND IS/IP 432 0 0 0.0 199.8 0 0 5 427 10/01/99 03/12/87 12/03/96 109 SOUND IS/IP 533 0 16 0.0 34.0 16 12 13 520 06/30/01 12/31/96 110 SOUND IS/IP 390 0 30 0.0 203.1 30 27 131 259 05/14/92 03/12/87 12/11/96 111 SOUND /PI 501 48 82 0.0 3.3 130 97 116 337 09/30/99 08/10/89 112 SOUND /PI 523 0 81 0.0 125.1 81 70 6 517 12/31/98 03/24/87 | -103 | SOUND | IS/PI | 237 | 1 | 45 | 0.0 | 23.9 | 46 | 39 | 9 | 227 | 04/30/00 | 06/01/89 | 01/28/00 | | | 108 SOUND IS/PI 456 0 26 0.0 203.6 26 2 0 455 02/28/01 03/17/89 01/28/00 107 SOUND /PI 376 14 61 0.0 0.0 75 61 293 69 06/30/99 03/12/87 108 SOUND IS/PI 432 0 0 0.0 199.8 0 0 5 427 10/01/99 03/12/87 12/03/96 109 SOUND IS/PI 533 0 16 0.0 34.0 16 12 13 520 06/30/01 12/31/96 110 SOUND IS/PI 390 0 30 0.0 203.1 30 27 131 259 06/14/92 03/12/87 12/11/96 111 SOUND /PI 501 48 82 0.0 3.3 130 97 116 337 09/30/99 08/10/89 112 SOUND /PI 523 0 81 0.0 125.1 81 70 6 517 12/31/98 03/24/87 | -104 | ASMD LKR | IS/IP | 294 | 1 | 34 | 0.0 | 0.0 | 35 | 31 | 293 | 0 | 12/20/84 | 12/12/84 | | | | 107 SOUND /Pt 376 14 61 0.0 0.0 75 61 293 69 06/30/99 03/12/87 108 SOUND IS/PI 432 0 0 0.0 199.8 0 0 5 427 10/01/99 03/12/87 12/03/96 109 SOUND IS/PI 533 0 16 0.0 34.0 16 12 13 520 06/30/01 12/31/96 110 SOUND IS/PI 390 0 30 0.0 203.1 30 27 131 258 05/14/92 03/12/87 12/11/96 111 SOUND /PI 501 48 82 0.0 3.3 130 97 116 337 08/30/99 08/10/89 112 SOUND /PI 523 0 81 0.0 125.1 81 70 6 517 12/31/98 03/24/87 | -105 | SOUND | IS/IP | 456 | 0 | 42 | 0.0 | 114.3 | 42 | 33 | 2 | 454 | 09/26/88 | 04/12/89 | | | | 108 SOUND IS/PI 432 0 0 0.0 199.8 0 0 5 427 10/01/99 03/12/87 12/03/96 109 SOUND IS/PI 533 0 16 0.0 34.0 16 12 13 520 06/30/01 12/31/96 110 SOUND IS/PI 390 0 30 0.0 203.1 30 27 131 259 05/14/92 03/12/87 12/11/96 111 SOUND /PI 501 48 82 0.0 3.3 130 97 116 337 09/30/99 06/10/89 112 SOUND /PI 523 0 81 0.0 125.1 81 70 6 517 12/31/96 03/24/87 | -106 | SOUND | IS/PI | 455 | | 26 | 0.0 | 203.6 | 26 | 2 | 0 | 465 | 02/28/01 | 03/17/89 | 01/28/00 | | | 109 SOUND IS/PI 533 0 16 0.0 34.0 16 12 13 520 06/30/01 12/31/96 110 SOUND IS/PI 390 0 30 0.0 203.1 30 27 131 259 05/14/92 03/12/87 12/11/96 111 SOUND /PI 501 48 82 0.0 3.3 130 97 116 337 09/30/99 06/10/89 112 SOUND /PI 523 0 81 0.0 125.1 81 70 6 517 12/31/96 03/24/87 | -107 | SOUND | /Pt | 376 | 14 | 61 | 0.0 | 0.0 | 75 | 61 | 293 | 69 | 06/30/99 | 03/12/87 | | | | 110 SOUND IS/PI 390 0 30 0.0 203.1 30 27 131 259 05/14/92 03/12/87 12/11/96 111 SOUND /PI 501 48 82 0.0 3.3 130 97 116 337 09/30/99 08/10/89 112 SOUND /PI 523 0 81 0.0 125.1 81 70 6 517 12/31/96 03/24/87 | -108 | SOUND | IS/PI | 432 | 0 | 0 | 0.0 | 199.8 | 0 | 0 | 5 | 427 | 10/01/99 | 03/12/87 | 12/03/96 | | | 111 SOUND /PI 501 48 82 0.0 3.3 130 97 116 337 09/30/99 08/10/89
112 SOUND /PI 523 0 81 0.0 125.1 81 70 6 517 12/31/98 03/24/87 | -109 | SOUND | IS/PI | 533 | 0 | 16 | 0.0 | 34.0 | 16 | 12 | 13 | 520 | 06/30/01 | 12/31/96 | | [| | 112 SOUND /PI 523 0 81 0.0 125.1 81 70 6 517 12/31/98 03/24/87 | S-110 | SOUND | IS/PI | 390 | 0 | 30 | 0.0 | 203.1 | 30 | 27 | 131 | 259 | 05/14/92 | 03/12/87 | 12/11/96 | | | | -111 | SOUND | /Pi | 501 | 48 | 82 | 0.0 | 3.3 | 130 | 97 | 116 | 337 | 09/30/99 | 08/10/89 | | | | 2 TANKS - TOTALS 5116 | -112 | SOUND | /PI | 523 | 0 | 81 | 0.0 | 1 25.1 | 81 | 70 | 6 | 517 | 12/31/98 | 03/24/87 | | | | | 2 TAN | KS - TOTALS | | 5116 | | | | | | | 1184 | 3866 | | | | | TABLE B-1. INVENTORY AND STATUS BY TANK - SINGLE-SHELL TANKS These volumes are the result of engineering calculations and may not agree with surface level measurements. See footnotes for information on tanks in process of Interior Stabilization. | | | | | See # | potentes for i | niornati | 00) VIII (8) | dis in pas | en of Ince | m Stabi | izalo. | | | | | |-------------|-------------------|----------------|--------------------------|--------------------------------------|--|-----------------------------------|---------------------|--|-------------|------------------|------------------------|----------------------------|--------------------------|--------------------------|--| | | | | ,, , | | | | WASTE \ | OLUMES | | | | | PHOTOS | MDE08 | | | TANK
NO. | TANK
INTEGRITY | TANK
STATUS
 TOTAL
WASTE
(Kgal) | SUPER-
NATANT
LIQUID
(Kgaf) | DRAMABLE
INTERSTITIAL
LIQUID
(Kgal) | PUMPED
THIS
MONTH
(Kgall | TOTAL PUMPED (Kgel) | DRAINABLE
LIQUID
REMAINING
(Kgst) | LIQUID | SLUDGE
(Kgaf) | SALT
CAKE
(Kgell | SOLIDS
VOLUME
UPDATE | LAST
IN-TANK
PHOTO | LAST
IN-TANK
VIDEO | SEE
FOOTNOTE
FOR
THESE
CHANGES | | | | | | | 1.0.0 1001.01 | 82 | TANKI | ARM STAT | US | • | | | | | | | 3X-101 | SOUND | /64 | 426 | l m | (1) | 0.0 | 22.5 | (f) | | | 426 | 09/30/01 | 03/10/09 | | l m | | 3X-102 | SOUND | /PI | 514 | 134 | 95 | 0.0 | 0.0 | 229 | 216 | | 360 | 04/30/00 | 01/07/66 | | | | X-103 | SOUND | /PI | 507 | (a) | (g) | 1.2 | 127.0 | (g) | (6) | 109 | 396 | 11/30/01 | 12/17/87 | | i tel | | X-104 | ASMD LKR | 15/14 | 446 | 0 | 48 | 0.0 | 231.3 | 48 | 44 | 136 | 310 | 04/30/00 | 09/06/88 | 02/04/98 | _ | | X-105 | SOUND | /PI | 484 | (h) | (h) | 0.0 | 152.6 | (h) | (h) | 65 | 419 | 04/30/01 | 06/15/88 | | (h) | | X-106 | SOUND | IS/PI | 397 | 0 | 37 | 0.0 | 147.5 | 37 | 31 | 0 | 397 | 05/31/99 | 06/01/89 | | | | X-107 | ASMD LKR | 13/IP | 102 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 85 | 17 | 10/31/00 | 03/06/67 | | | | X-108 | ASMO LKR | IS/IP | 67 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 87 | 0 | 12/31/93 | 03/06/67 | | | | X-100 | ASMD LKR | IS/IP | 249 | 0 | . 0 | 0.0 | 0.0 | 0 | 0 | 80 | 189 | 10/31/00 | 05/21/86 | | | | IX-110 | ASMD LKR | IS/IP | 62 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 62 | 0 | 10/06/76 | 02/20/67 | | | | IX-111 | ASMD LKR | IS/IP | 122 | 0 | 8 | 0,0 | 0.0 | 8 | 3 | 122 | 0 | 06/30/99 | 06/09/94 | | | | X-112 | ASMD LKR | IS/IP | 108 | 0 | 6 | 0.0 | 0.0 | 6 | 1 | 108 | 0 | 06/30/99 | 03/10/87 | | | | X-113 | ASMO LKR | IS/IP | 31 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 31 | 0 | 06/30/99 | 03/18/88 | | | | IX-114 | ASMD LKR | IS/IP | 165 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 44 | 121 | 10/31/00 | 02/26/67 | | | | X-115 | ASMD LKR | IS/IP | 12 | ٥ | 0 | 0.0 | 0.0 | 0 | 0 | 12 | 0 | 04/28/62 | 03/31/86 | | | | 5 TAN | (S - TOTALS: | | 3712 | | | | | | | 921 | 2657 | | | | | | | | | | | | т | TANK F | ARM STATI | JS | | | | | | | | r-101 | ASMD LKR | 15/PI | 102 | 1 1 | 20 | 0.0 | 25.3 | 21 | 16 | 37 | 64 | 06/30/99 | 04/07/93 | | 1 | | r-102 | SOUND | IS/IP | 32 | 13 | 3 | 0.0 | 0.0 | 16 | 11 | 19 | 0 | 08/31/84 | 06/28/89 | | | | -103 | ASMD LKR | IS/IP | 27 | 4 | 3 | 0.0 | 0.0 | 7 | 3 | 23 | 0 | 11/29/83 | 07/03/84 | | | | -104 | SOUND | IS/PI | 317 | 0 | 31 | 0.0 | 149.5 | 31 | 27 | 317 | 0 | 12/31/99 | 06/29/89 | 10/07/99 | | | -105 | SOUND | IS/IP | 98 | ۰ ا | 5 | 0.0 | 0.0 | 5 | 0 | 96 | 0 | 05/29/87 | 05/14/87 | | | | -106 | ASMD LKR | IS/IP | 21 | 2 | 0 | 0.0 | 0.0 | 2 | 2 | 19 | 0 | 04/28/82 | 06/29/89 | | | | -107 | ASMO LKR | IS/PI | 173 | 0 | 34 | 0.0 | 11.0 | 34 | 20 | 173 | 0 | 05/31/96 | 07/12/84 | 05/09/96 | | | -108 | ASMD LKR | IS/IP | 44 | l o | 5 | 0.0 | 0.0 | 5 | 0 | 21 | 23 | 06/30/99 | 07/17/84 | | | TABLE B-1. INVENTORY AND STATUS BY TANK - SINGLE-SHELL TANKS November 30, 2001 | NO. INTEGRITY STATUS (Kgall) (| | | | | | result of eng | | | | | | | | | | | |--|-------|-------------|---------------------------------------|-------|--------|---------------|---------------------|--------|-----------------------|--------------|---------------|------|----------|----------|----------|----------| | Suppose | | | | | 3.1 | | \$6:55 \$: C P : 1 | | 3311111111111 (QT1011 | | (11.50)(10.0) | | | | | | | TOTAL NATION TANK TANK TANK WASTE LIQUID | - | | | | | | | WASTE | OLUMES | | T | | <u></u> | PHOTOS | VIDES | | | ANK TANK TANK WASTE LIQUID LIQUID MONTH PUMPED REMAINING | | | | | CHECO. | NOA NIAMI E | DUMADED | | DOANAME | MILLION OF C | • | | | | | | | ANK TANK TANK WASTE LIQUID (IQUID) MONTH PUMPED REMAINING REMAININ | | | | TOTAL | | | | TOTAL | | | | CALT | corne | LACT | LACT | | | NO. INTEGRITY STATUS (Kgall) (| TANK | TANK | TANK | | | | | | | | SILINGE | | | | | THESE | | 10 SOUND IS/P 369 1 48 0.0 50.3 48 43 368 0 01/31/00 07/12/84 10/07/89 11 ASMD LIKR IS/P 446 0 38 0.0 8.8 38 35 446 0 04/18/84 04/13/94 02/13/96 12 SOUND IS/P 67 7 4 0.0 0.0 11 7 60 0 04/28/82 06/07/84 09/13/96 09 | NO. | | | | | | | | | | 4 | | | | | CHANGES | | 10 SOUND IS/P 369 1 48 0.0 50.3 48 43 368 0 01/31/00 07/12/84 10/07/89 11 ASMD LIKR IS/P 446 0 38 0.0 8.8 38 35 446 0 04/18/84 04/13/94 02/13/96 12 SOUND IS/P 67 7 4 0.0 0.0 11 7 60 0 04/28/82 06/07/84 09/13/96 09 | | | : | | | | | | | | | | | | | • | | 111 ASMO LICR IS/PI 446 0 38 0.0 9.6 38 35 446 0 04/18/94 04/13/94 02/13/95 12 30UND IS/P 67 7 4 0.0 0.0 11 7 60 0 04/28/92 040/18/4 01 50UND IS/P 28 1 4 0.0 0.0 5 1 26 0 06/31/79 04/15/96 02/13/95
02/13/95 02/ | -109 | | | | 0 | | | | - | | 0 | 58 | 06/30/99 | 02/25/93 | | ł | | 12 SOUND SI/IP 67 7 4 0.0 0.0 11 7 60 0 04/26/82 04/01/84 02/01 SOUND SI/IP 28 1 4 0.0 0.0 5 1 26 0 04/26/82 04/01/86 02/25/86 02/25/87 04/15/86 02/25/87 04/15/86 02/25/87 04/15/86 02/25/87 04/15/86 04/26/82 | -110 | = | | | | · · | | | | | 368 | 0 | 01/31/00 | 07/12/84 | 10/07/99 | | | SOUND SAMP 28 1 | -111 | | - | | | | | | | | 446 | 0 | | 04/13/94 | 02/13/95 | i | | 102 SOUND IS/IP 21 0 3 0.0 0.0 3 0 21 0 07/12/81 07/06/89 | -112 | | | | _ | • | | | | 7 | 1 | 0 | | | | | | TANKS - TOTALS 1877 38 0 5 0.0 0.0 5 0 35 0 01/31/78 08/03/89 | -201 | . – | - | - | | - | | 0.0 | - | 1 | 20 | 0 | 05/31/78 | 04/15/96 | | | | TANKS - TOTALS 1877 1877 1878 1879 | -202 | | | | 0 | _ | | 0.0 | _ | 0 | 21 | 0 | | | | } | | TANKS - TOTALS | -203 | | IS/IP | | • | = | | 0.0 | | 0 | 1 | 0 | 01/31/78 | 08/03/89 | | Ì | | TX TANK FARM STATUS -101 SOUND IS/IP/CCS 87 3 8 0.0 0.0 111 7 74 10 06/30/99 10/24/95 -102 SOUND IS/IP/CCS 217 0 27 0.0 94.4 27 16 0 217 06/31/84 10/31/95 -103 SOUND IS/IP/CCS 157 0 18 0.0 68.3 18 11 0 157 06/30/99 10/31/96 -104 SOUND IS/IP/CCS 65 6 9 0.0 3.6 14 9 23 37 06/30/99 10/31/96 -105 ASMD LKR IS/IP/CCS 609 0 25 0.0 121.5 25 14 0 809 08/22/77 10/24/89 10/31/96 -106 SOUND IS/IP/CCS 341 0 37 0.0 134.6 37 30 0 341 06/30/99 10/31/96 -107 ASMD LKR IS/IP/CCS 36 1 6 0.0 0.0 7 1 8 27 06/30/99 10/31/96 -108 SOUND IS/IP/CCS 36 1 6 0.0 13.7 8 1 6 128 06/30/99 09/12/99 10/31/96 -109 SOUND IS/IP/CCS 384 0 8 0.0 13.7 8 1 6 128 06/30/99 09/12/99 10/34/99 09/12/99 -110 ASMD LKR IS/IP/CCS 380 0 6 0.0 72.3 6 2 384 0 06/30/99 09/12/99 10/34/99 09/12/99 10/34/99 09/12/99 10/34/99 09/12/99 10/34/99 09/12/99 10/34/99 09/12/99 10/34/99 09/12/99 10/34/99 10/34/99 10/34/99 09/12/99 10/34/99 09/12/99 10/34/99 09/12/99 10/34/99 09/12/99 10/34/99 09/12/99 10/34/99 09/12/99 10/34/99 09/12/99 10/34/99 09/12/99 10/34/99 09/12/99 10/34/99 09/12/99 10/34/99 09/12/99 10/34/99 09/12/99 10/34/99 09/12/99 10/34/99 09/12/99 10/34/99 09/12/99 10/34/99 09/12/99 09/12/99 10/34/99 09/12/99 09/12/99 10/34/99 09/12/99 09/12/99 10/34/99 09/12/99 09/12/99 09/12/99 10/34/99 09/12/99 09/12/99 09/12/99 09/12/99 09/12/99 09/12/99 09/12/99 09/12/99 09/12/99 09/12/ | -204 | SOUND | IS/IP | 38 | 0 | 5 | 0.0 | 0.0 | 5 | 0 | 38 | 0 | 07/22/81 | 06/03/69 | | l | | -101 SOUND IS/IP/CCS 87 3 8 0.0 0.0 111 7 74 10 06/30/99 10/24/85 10/31/86
10/31/86 | 6 TAN | KS - TOTALS | · · · · · · · · · · · · · · · · · · · | 1877 | | | | | | **** | 1703 | 145 | | | | | | -101 SOUND IS/IP/CCS 87 3 8 0.0 0.0 111 7 74 10 06/30/99 10/24/85 10/31/86 | | | | • | | | 17 | TANK I | FARM STAT | TIS | | | | | | | | -102 SOUND IS/IP/CCS 217 0 27 0.0 94.4 27 16 0 217 08/31/86 10/31/ | X-101 | SOUND | 1S/IP/CCS | 87 | 3 | 8 | | | | | 74 | 10 | 06/30/99 | 10/24/85 | | ł | | -104 SOUND IS/IP/CCS 65 5 9 0.0 3.6 14 9 23 37 06/30/99 10/16/84 -106 ASMD LKR IS/IP/CCS 609 0 25 0.0 121.5 25 14 0 609 08/22/77 10/24/89 -108 SOUND IS/IP/CCS 341 0 37 0.0 134.6 37 30 0 341 06/30/99 10/31/85 -107 ASMD LKR IS/IP/CCS 36 1 6 0.0 0.0 7 1 8 27 06/30/99 10/31/85 -108 SOUND IS/IP/CCS 134 0 8 0.0 13.7 8 1 6 128 06/30/99 09/12/89 -109 SOUND IS/IP/CCS 384 0 6 0.0 72.3 6 2 384 0 06/30/99 10/24/89 09/12/89 -110 ASMD LKR IS/IP/CCS 462 0 14 0.0 116.1 14 10 37 425 06/30/99 10/24/89 09/12/89 -111 SOUND IS/IP/CCS 370 0 10 0.0 88.4 10 6 43 327 06/30/99 09/12/89 09/ | X-102 | SOUND | IS/IP/CCS | 217 | 0 | 27 | 0.0 | 94.4 | 27 | 16 | l . | 217 | 08/31/84 | 10/31/85 | | } | | -104 SOUND IS/IP/CCS 65 5 9 0.0 3.6 14 9 23 37 06/30/99 10/16/84 -106 ASMD LKR IS/IP/CCS 609 0 25 0.0 121.5 25 14 0 609 08/22/77 10/24/89 -108 SOUND IS/IP/CCS 341 0 37 0.0 134.6 37 30 0 341 06/30/99 10/31/85 -107 ASMD LKR IS/IP/CCS 36 1 6 0.0 0.0 7 1 8 27 06/30/99 10/31/85 -108 SOUND IS/IP/CCS 134 0 8 0.0 13.7 8 1 6 128 06/30/99 09/12/89 -109 SOUND IS/IP/CCS 384 0 6 0.0 72.3 6 2 384 0 06/30/99 10/24/89 09/12/89 -110 ASMD LKR IS/IP/CCS 462 0 14 0.0 116.1 14 10 37 425 06/30/99 10/24/89 09/12/89 -111 SOUND IS/IP/CCS 370 0 10 0.0 88.4 10 6 43 327 06/30/99 09/12/89 09/ | X-103 | SOUND | IS/IP/CCS | 157 | 0 | 18 | 0.0 | 68,3 | 18 | 11 | 0 | 157 | 06/30/99 | 10/31/86 | | | | -106 SOUND IS/IP/CCS 341 0 37 0.0 134.6 37 30 0 341 00/30/99 10/31/95
10/31/95 10/31 | X-104 | SOUND | IS/IP/CCS | 65 | 6 | 9 | 0.0 | | 14 | | 23 | | | | | Į. | | -107 ASMD LKR IS/IP/CCS 36 1 6 0.0 0.0 7 1 8 27 06/30/89 10/31/86 -108 SOUND IS/IP/CCS 134 0 8 0.0 13.7 8 1 6 128 06/30/89 08/12/89 -109 SOUND IS/IP/CCS 384 0 6 0.0 72.3 6 2 384 0 06/30/89 10/24/89 -110 ASMD LKR IS/IP/CCS 462 0 14 0.0 115.1 14 10 37 425 06/30/89 10/24/89 -111 SOUND IS/IP/CCS 370 0 10 0.0 88.4 10 6 43 327 06/30/89 09/12/89 -112 SOUND IS/IP/CCS 649 0 26 0.0 94.0 26 21 0 649 06/30/83 11/19/87 -113 ASMD LKR IS/IP/CCS 653 0 30 0.0 19.2 30 0 0 653 10/31/00 04/11/83 09/23/94 -114 ASMD LKR IS/IP/CCS 568 0 25 0.0 99.1 25 15 0 568 06/30/99 04/11/83 02/17/96 -116 ASMD LKR IS/IP/CCS 568 0 25 0.0 99.1 25 15 0 568 06/30/99 04/11/83 02/17/96 -116 ASMD LKR IS/IP/CCS 626 0 10 0.0 54.3 10 5 29 587 06/30/99 04/11/83 -117 ASMD LKR IS/IP/CCS 626 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | X-105 | ASMD LKR | IS/IP/CCS | 609 | | 25 | 0.0 | 121.5 | 25 | 14 | 0 | 609 | 08/22/77 | 10/24/89 | | | | -108 SOUND IS/IP/CCS 134 0 8 0,0 13,7 8 1 6 128 06/30/99 06/12/89 10/24/89 | X-106 | SOUND | IS/IP/CCS | 341 | 0 | 37 | 0.0 | 134.6 | 37 | 30 | 0 | 341 | 06/30/99 | 10/31/65 | | 1 | | -109 SOUND IS/IP/CCS 384 0 6 0.0 72.3 6 2 384 0 06/30/99 10/24/69 -110 ASMD LKR IS/IP/CCS 462 0 14 0.0 115.1 14 10 37 425 06/30/99 10/24/69 -111 SOUND IS/IP/CCS 370 0 10 0.0 98.4 10 6 43 327 06/30/99 06/12/89 -112 SOUND IS/IP/CCS 649 0 26 0.0 94.0 26 21 0 649 05/30/83 11/19/87 -113 ASMD LKR IS/IP/CCS 653 0 30 0.0 19.2 30 0 0 653 10/31/00 04/11/83 09/23/94 -114 ASMD LKR IS/IP/CCS 535 0 17 0.0 104.3 17 11 4 531 06/30/99 04/11/83 02/17/96 -115 ASMD LKR IS/IP/CCS 568 0 25 0.0 99.1 25 15 0 568 06/30/99 04/11/83 02/17/96 -116 ASMD LKR IS/IP/CCS 631 0 21 0.0 23.8 21 17 68 563 06/30/99 04/11/83 -117 ASMD LKR IS/IP/CCS 626 0 10 0.0 54.3 10 5 29 597 06/30/99 04/11/83 -118 SOUND IS/IP/CCS 286 0 0 0.0 89.1 0 0 21 265 02/01/00 12/19/79 | X-107 | ASMD LKR | IS/IP/CCS | 36 | 1 | 6 | 0.0 | 0.0 | 7 | 1 | 8 | 27 | 06/30/99 | 10/31/85 | | | | -109 SOUND IS/IP/CCS 384 0 6 0.0 72.3 6 2 384 0 06/30/99 10/24/99 -110 ASMD LKR IS/IP/CCS 462 0 14 0.0 115.1 14 10 37 425 06/30/99 10/24/99 -111 SOUND IS/IP/CCS 370 0 10 0.0 98.4 10 6 43 327 06/30/99 09/12/89 -112 SOUND IS/IP/CCS 649 0 26 0.0 94.0 26 21 0 649 05/30/83 11/19/87 -113 ASMD LKR IS/IP/CCS 653 0 30 0.0 19.2 30 0 0 653 10/31/00 04/11/83 09/23/94 -114 ASMD LKR IS/IP/CCS 535 0 17 0.0 104.3 17 11 4 531 06/30/99 04/11/83 02/17/96 -116 ASMD LKR IS/IP/CCS 568 0 25 0.0 99.1 25 15 0 568 06/30/99 04/11/83 02/17/96 -116 ASMD LKR IS/IP/CCS 631 0 21 0.0 23.8 21 17 68 563 06/30/99 04/11/83 -117 ASMD LKR IS/IP/CCS 626 0 10 0.0 54.3 10 5 29 597 06/30/99 04/11/83 -118 SOUND IS/IP/CCS 286 0 0 0.0 89.1 0 0 21 265 02/01/00 12/19/79 | X-106 | SOUND | IS/IP/CCS | 134 | 0 | 8 | 0.0 | 13.7 | 6 | t | 6 | 128 | 06/30/99 | 09/12/89 | | Ì | | -111 SOUND IS/IP/CCS 370 0 10 0.0 98.4 10 6 43 327 06/30/88 09/12/88 -112 SOUND IS/IP/CCS 649 0 26 0.0 94.0 26 21 0 649 06/30/83 11/19/87 -113 ASMD LKR IS/IP/CCS 653 0 30 0.0 19.2 30 0 0 653 10/31/00 04/11/83 09/23/94 -114 ASMD LKR IS/IP/CCS 535 0 17 0.0 104.3 17 11 4 531 06/30/99 04/11/83 02/17/95 -116 ASMD LKR IS/IP/CCS 568 0 25 0.0 99.1 26 15 0 568 06/30/99 06/15/86 -116 ASMD LKR IS/IP/CCS 631 0 21 0.0 23.8 21 17 68 563 06/30/99 04/11/83 -117 ASMD LKR IS/IP/CCS 626 0 10 0.0 54.3 10 5 29 597 06/30/99 04/11/83 -118 SOUND IS/IP/CCS 286 0 0 0.0 89.1 0 0 21 265 02/01/00 12/19/79 | X-109 | SOUND | IS/IP/CCS | 384 | 0 | 6 | 0.0 | 72.3 | 6 | 2 | 384 | 0 | | 10/24/69 | | ł | | -111 SOUND IS/IP/CCS 370 0 10 0.0 98.4 10 6 43 327 08/30/88 08/12/88 -112 SOUND IS/IP/CCS 649 0 26 0.0 94.0 26 21 0 649 05/30/83 11/19/87 -113 ASMD LKR IS/IP/CCS 653 0 30 0.0 19.2 30 0 0 653 10/31/00 04/11/83 09/23/94 -114 ASMD LKR IS/IP/CCS 535 0 17 0.0 104.3 17 11 4 531 08/30/99 04/11/83 02/17/95 -115 ASMD LKR IS/IP/CCS 568 0 25 0.0 99.1 25 15 0 568 06/30/99 04/11/83 02/17/95 -116 ASMD LKR IS/IP/CCS 631 0 21 0.0 23.8 21 17 68 563 06/30/99 04/11/83 -117 ASMD LKR IS/IP/CCS 626 0 10 0.0 54.3 10 5 29 597 06/30/99 04/11/83 -118 SOUND IS/IP/CCS 286 0 0 0.0 89.1 0 0 21 265 02/01/00 12/19/79 | X-110 | ASMD LKR | IS/IP/CCS | 462 | 0 | 14 | 0.0 | 115.1 | 14 | 10 | 37 | 425 | 06/30/99 | 10/24/69 | | | | -112 SOUND IS/IP/CCS 649 0 26 0.0 94.0 26 21 0 649 05/30/83 11/19/87 -113 ASMD LKR IS/IP/CCS 653 0 30 0.0 19.2 30 0 0 653 10/31/00 04/11/83 09/23/94 -114 ASMD LKR IS/IP/CCS 535 0 17 0.0 104.3 17 11 4 531 06/30/99 04/11/83 02/17/95 -115 ASMD LKR IS/IP/CCS 568 0 25 0.0 99.1 25 15 0 568 06/30/99 06/15/86 -116 ASMD LKR IS/IP/CCS 631 0 21 0.0 23.8 21 17 68 563 06/30/99 04/11/83 -117 ASMD LKR IS/IP/CCS 626 0 10 0.0 54.3 10 5 29 597 06/30/99 04/11/83 -118 SOUND IS/IP/CCS 286 0 0 0.0 89.1 0 0 21 265 02/01/00 12/19/79 | X-111 | SOUND | IS/IP/CCS | 370 | 0 | 10 | 0.0 | 98.4 | 10 | 6 | 43 | | | | | ł | | -113 ASMD LKR IS/IP/CCS 653 0 30 0.0 19.2 30 0 0 653 10/31/00 04/11/83 09/23/94 -114 ASMD LKR IS/IP/CCS 535 0 17 0.0 104.3 17 11 4 531 06/30/99 04/11/83 02/17/95 -115 ASMD LKR IS/IP/CCS 568 0 25 0.0 99.1 26 15 0 568 06/30/99 04/11/83 02/17/95 -116 ASMD LKR IS/IP/CCS 631 0 21 0.0 23.8 21 17 68 563 06/30/99 04/11/89 -117 ASMD LKR IS/IP/CCS 626 0 10 0.0 54.3 10 5 29 597 06/30/99 04/11/83 -118 SOUND IS/IP/CCS 286 0 0 0.0 89.1 0 0 21 265 02/01/00 12/19/79 | X-112 | SOUND | IS/IP/CCS | 649 | 0 | 26 | 0.0 | 94.0 | 26 | 21 | 0 | _ | | | | Ī | | -114 ASMD LKR IS/IP/CCS 535 0 17 0.0 104.3 17 11 4 531 06/30/99 04/11/83 02/17/95 -115 ASMD LKR IS/IP/CCS 568 0 25 0.0 99.1 25 15 0 568 06/30/99 06/15/86 -116 ASMD LKR IS/IP/CCS 631 0 21 0.0 23.8 21 17 68 563 06/30/99 10/17/89 -117 ASMD LKR IS/IP/CCS 626 0 10 0.0 54.3 10 5 29 597 06/30/99 04/11/83 -118 SOUND IS/IP/CCS 286 0 0 0.0 89.1 0 0 21 265 02/01/00 12/19/79 | X-113 | ASMD LKR | IS/IP/CCS | 653 | 0 | 30 | 0.0 | 19.2 | 30 | | 0 | | | | 09/23/94 | | | -116 ASMO LKR IS/IP/CCS 568 0 25 0.0 99.1 25 15 0 568 06/30/99 06/15/86 -116 ASMO LKR IS/IP/CCS 631 0 21 0.0 23.8 21 17 68 563 06/30/99 10/17/89 -117 ASMO LKR IS/IP/CCS 626 0 10 0.0 54.3 10 5 29 597 06/30/99 04/11/83 -118 SOUND IS/IP/CCS 286 0 0 0.0 89.1 0 0 21 265 02/01/00 12/19/79 | X-114 | ASMD LKR | IS/IP/CCS | 535 | 0 | 17 | 0.0 | | 17 | 11 | | | | | | | | -116 ASMD LKR IS/IP/CCS 631 0 21 0.0 23.8 21 17 68 563 06/30/96 10/17/86 -117 ASMD LKR IS/IP/CCS 626 0 10 0.0 54.3 10 5
29 597 06/30/96 04/11/83 -118 SOUND IS/IP/CCS 286 0 0 0.0 89.1 0 0 21 265 02/01/00 12/18/78 | X-115 | ASMD LICE | IS/IP/CCS | 568 | 0 | 25 | 0.0 | 99.1 | | | 0 | | | | | 1 | | -117 ASMD LKR IS/IP/CCS 626 0 10 0.0 54.3 10 5 29 597 06/30/99 04/11/83 -118 SOUND IS/IP/CCS 286 0 0 0.0 69.1 0 0 21 265 02/01/00 12/19/79 | X-116 | ASMO LKR | • | 631 | 0 | 21 | 0.0 | 23.8 | - | | 68 | | | | | | | -118 SOUND IS/IP/CCS 288 0 0 0.0 89.1 0 0 21 265 02/01/00 12/19/79 | X-117 | • | | | o | _ | | | _ | | _ | | | | | | | | X-118 | | | | _ | | | | | | _ | | | | | | | | | | | 6810 | | | | | | | 697 | 6104 | | | | <u> </u> | TABLE B-1. INVENTORY AND STATUS BY TANK - SINGLE-SHELL TANKS November 30, 2001 | | | | | | | | | noci su, zu | | | | | | | | |------------------|-------------------|---------------------------------------|--------------------------|--------------------------------------|---|-----------------------------------|---------------------|--|---|------------------|------------------------|----------------------------|--------------------------|--------------------------|--| | | | These | volunca | are the | result of eng | incering | ciela | con and ma | y and negle | | | | | | | | | | | | Sec 1 | cotnotes for | nfame | ion te t | nts in proc | ess of laws | n San | | | | | | | | | | | | | | | OLUMES | | | ************* | | PHOTOS | S/VIDEOS | | | TANK
NO. | TANK
INTEGRITY | TANK
STATUS | TOTAL
WASTE
(Kgel) | SUPER-
NATANT
LIQUID
(Kgel) | DRAINABLE
INTERSTITIAL
LIQUID
(Kgal) | PUMPED
THIS
MONTH
(Kgel) | TOTAL PUMPED (Kgel) | DRAINABLE
LIQUID
REMAINING
(Kgal) | PUMPABLE
LIQUID
REMAINING
(Kgal) | SLUDGE
(Kgal) | SALT
CAKE
(Kgal) | SOLIDS
VOLUME
UPDATE | LAST
IN-TANK
PHOTO | LAST
IN-TANK
VIDEO | SEE
FOOTNOTE
FOR
THESE
CHANGES | | | WITE CONTIN | DIATOS | Sections. | (vile) | (v.fles) | (vBm) | ivAet | ivited | (ville) | 1 was | ivāet | VIVALE | molo | VIDEO | CHANGE | | | | | | | | I | Y TANK | FARM STAT | <u>us</u> | | | | | | | | Y-101 | ASMD LICE | IS/IP/CCS | 118 | 0 | 2 | 0.0 | 8.2 | 2 | 0 | 72 | 46 | 06/30/99 | 06/22/89 | | 1 | | Y-102 | SOUND | IS/IP/CCS | 64 | 0 | 12 | 0.0 | 6.6 | 12 | 5 | 0 | 64 | 06/28/82 | 07/07/87 | | 1 | | Y-103 | ASMD LKR | 1S/IP/CCS | 162 | 0 | 20 | 0.0 | 11.5 | 20 | 16 | 162 | 0 | 07/09/82 | 06/22/69 | | | | Y-104 | ASMD LKR | IS/IP/CCS | 43 | 0 | 4 | 0.0 | 0.0 | 4 | 0 | 43 | 0 | 06/27/90 | 11/03/67 | | | | Y-106 | ASMD LKR | IS/IP/CCS | 231 | 0 | 12 | 0.0 | 3.6 | 12 | 10 | 231 | 0 | 04/28/82 | 09/07/89 | | | | Y-106 | ASMD LKR | IS/IP/CCS | 21 | 0 | 3 | 0.0 | 0.0 | 3 | 0 | 21 | 0 | 06/30/99 | 06/22/89 | | | | 6 TAN | S - TOTALS | | 639 | | | | | | | 529 | 110 | | | | 1 | | | | · · · · · · · · · · · · · · · · · · · | | <u> </u> | | | | | | | | . | <u> </u> | | · | | | | | | | | Ţ | | ARM STATU | <u>is</u> | | | | | | | | F10 1 | ASMD LKR | IS/IP | 25 | 3 | 3 | 0.0 | 0.0 | . 6 | 2 | 22 | 0 | 04/28/82 | | | Ī | | -102 | SOUND | /171 | 289 | l m | (A) | 0.0 | 86.3 | (1) | (1) | 43 | 246 | 08/31/01 | 06/06/66 | | | | -103 | SOUND | 15/PI | 418 | 1 | 33 | 0.0 | 98,9 | 34 | 26 | 13 | 404 | 05/31/00 | | | | | -104 | ASMO LKR | IS/IP | 122 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 79 | 43 | 06/30/99 | | | 1 | | -105 | SOUND | IS/PI | 363 | 0 | 44 | 0.0 | 87.5 | 44 | 32 | 32 | 321 | 03/31/01 | 07/07/88 | | l | | -106 | SOUND | IS/PI | 172 | 2 | 36 | 0.0 | 39.1 | 38 | 30 | 0 | 170 | 03/31/01 | 07/07/86 | | _ | | -107 | SOUND | /Pt | 397 | 0 | () | 0.0 | 11.7 | 9 | 0 | 15 | 349 | 10/31/01 | 10/27/88 | | 0 | | -108 | SOUND | /PI | 468 | 24 | 108 | 0.0 | 0.0 | 132 | 124 | 29 | 415 | 12/31/98 | | | l | | -109 | ASMD LKR | /PI | 387 | (k) | (k) | 0.0 | 78.4 | (k) | (k) | 35 | 352 | 08/31/01 | 07/07/88 | | (k) | | -110 | SOUND | 15/P1
/P 1 | 186 | 0 | 18
80 | 0.0
0.0 | 0.0 | 18 | 14 | 186 | 0 | 12/30/84 | 12/11/84 | | l | | -111
-112 | ASMO LKR | IS/IP | 329
49 | 4 | 4 | 0.0 | 0.0
0.0 | 80
6 | 71 | 26 | 303 | 12/31/98 | | | 1 | | -112
-201 | SOUND | 15/IP | +3
5 | ; | 7 | 0.0 | 0.0 | 2 | 4 | 45 | 0 | 02/10/84 | 08/03/89 | | | | -201
-202 | SOUND | 15/IP | 5 | ; | 1 | 0.0 | 0.0 | 2 2 | 1 | 4 | 0 | 08/15/79
08/15/79 | 06/06/89 | | - | | -202
-203 | SOUND | 13/17
15/19 | 3 | ; | 0 | 0.0 | 0.0 | | 1 | i . | 0 | 08/15/79 | 08/08/89 | | | | -203
-204 | SOUND | IS/IP | 3 | ; | 0 | 0.0 | 0.0 | 1 | ;
1 | 2 2 | 0 | 08/15/79 | 06/13/89
06/13/89 | | | | | | | | <u> </u> | | | | | | | | 201,0170 | 34.40 | | | | 6 TAN | KS - TOTALS | | 3211 | | | | | | | 537 | 2603 | | | · - · - · · | | | | UD TOTAL | | | ļ | | | | | | 44055 | 4070 - | L | | | | | GRA | ND TOTAL | | 33196 | 1 | | | | | | 11053 | 20792 | | | | <u> </u> | ## TABLE B-1. INVENTORY AND STATUS BY TANK – SINGLE-SHELL TANKS November 30, 2001 #### Footnotes: Total waste is calculated as the sum of Sludge and Saltcake plus Supernatant. The category "Interim Isolated (II)" was changed to "Intrusion Prevention (IP) in June 1993. Stabilization information is from WHC-SD-RE-TI-178, "SST Stabilization Record," latest revision, or from the SST Stabilization Project or the System Engineer. All estimated initial volumes are per HNF-2978, Rev. 2, "Updated Pumpable Liquid Volume Estimates and Jet Pump Operations for Interim Stabilization of Remaining Single-Shell Tanks," August 2000, (a) A-101 Initial estimated Pumpable Liquid volume: 588.5 Kgal Pumping began on May 6, 2000. No pumping since August 2000. It is expected pumping will resume in December 2001. Final volumes will be determined at completion of Interim Stabilization. (b) AX-101 Initial estimated Pumpable Liquid volume: 444.0 Kgal Pumping began July 29, 2000, shut down in August 2000, and resumed March 22, 2001. Pumping shut down April 3, 2001, due to failure of the transfer line. No pumping since April 2001. It is expected pumping will resume in December 2001. Final volumes will be determined at completion of Interim Stabilization. (c) BY-105 Initial estimated Pumpable Liquid volume: 109.9 Kgal Pumping began July 11, 2001. Remaining volumes are based on HNF-2978, Rev. 2. Saltcake volume adjusted to correspond to current waste removal. Pumping was shut down in August 2001 due to transfer line leak detectors not meeting all operability requirements of the TSR. Compensatory actions were established to allow resumption of pumping. Additionally, field work for Project W-314, "Tank Farm Upgrades," took the primary transfer route out of service. No pumping from August to November 2001 when pumping resumed. Final volumes will be determined at completion of Interim Stabilization (d) BY-106 Initial estimated Pumpable Liquid volume: 182.7 Kgal Pumping was originally started August 10, 1995, and shut down October 17, 1995, due to an Unreviewed Safety Question (USQ) for flammable gas concerns. Total pumped by October 1995 was 63.7 Kgal. Pumping was restarted July 11, 2001. Pumping was shut down in August 2001 due to transfer line leak detectors not meeting all operability requirements of the TSR. Compensatory actions were established to allow resumption of pumping. Additionally, field work for Project W-314, "Tank Farm Upgrades," has taken the primary transfer route out of service. No pumping from July to November 2001 when pumping resumed. Final volumes will be determined at completion of Interim Stabilization (e) S-102 Initial estimated Pumpable Liquid volume: 145.8 Kgal Pumping commenced March 18, 1999. Many pumping problems occurred over the following months, and the pump was replaced several times. Pumping was interrupted again in June 2000. No pumping since June 2000. Final volumes will be determined at completion of Interim Stabilization (f) SX-101 Initial estimated Pumpable Liquid volume: 99.0 Kgal Pumping began November 22, 2000. No pumping since December 2000 due to pump failure. Pumping resumed in September 2001, following replacement of the saltwell pump and lower piping. No pumping in October or November 2001. Final volumes will be determined at completion of Interim Stabilization (g) SX-103 Initial estimated Pumpable Liquid volume: 132.0 Kgal Pumping began October 26, 2000. Pumping was shut down April 22, 2001 due to leak detector and subsequent shielding problems in the pump pit. Pumping resumed September 14, 2001. Final volumes will be determined at completion of Interim Stabilization (h) SX-105 Initial estimated Pumpable Liquid volume: 141.0 Kgal Saltwell pumping began August 8, 2000. Pumping was shut down in late April 2001 when the saltwell screen in-flow rate was measured at about 0.02 gpm. Interstitial fluid level is now being allowed to stabilize to determine if the tank can be declared interim stabilized. An in-tank video will be taken. Final volumes will be determined at completion of Interim Stabilization (i) U-102 Initial estimated Pumpable Liquid volume: 93.0 Kgal Pumping began in this tank on January 20, 2000. This tank was placed in observation mode in September 2001 for evaluation to determine if it meets the interim stabilization criteria. Final volumes will be determined at completion of Interim Stabilization (i) U-107 Initial estimated Pumpable Liquid volume: 115.0 Kgal Pumping began September 29, 2001. Final volumes will be determined at completion of Interim Stabilization (k) U-109 Initial estimated Pumpable Liquid volume: 119.4 Kgal Pumping began March 11, 2000. Pumping was shut down on December 3, 2000, due to jet pump failure. Attempts to restart the pump were unsuccessful; the pump was replaced and restarted March 30, 2001. This tank has been placed in observation mode for evaluation to determine if it meets the interim stabilization criteria. Final volumes will be determined at completion of Interim Stabilization TABLE B-2.
SINGLE-SHELL TANKS STABILIZATION STATUS SUMMARY November 30, 2001 | Partial Interim Isolated (PI) | Intrusion Preven | tion Completed (IP) | Interim Stabil | ized (IS) | |-------------------------------|---------------------|------------------------|--|--------------------| | EAST AREA | EAST AREA | WEST AREA | EAST AREA | WEST AREA | | A-101 | A-103 | S-104 | A-102 | S-103 | | A-102 | A-104 | S-105 | A-103 | S-104 | | | A-105 | • | A-104 | S-105 | | AX-101 | 8 A-106 | SX-107 | A-105 | S-106 | | | | SX-108 | A-106 | S-106 | | BY-102 | AX-102 | SX-109 | | S-109 | | BY-103 | AX-103 | SX-110 | AX-102 | S-110 | | BY-105 | AX-104 | SX-111 | AX-103 | | | BY-108 | | SX-112 | AX-104 | \$X-104 | | BY-109 | B-FARM - 16 tanks | SX-113 | | SX-106 | | | BX-FARM - 12 tanks | SX-114 | B-FARM - 16 tanks | SX-107 | | C-103 | | SX-115 | BX-FARM - 12 tanks | SX-108 | | C-105 | BY-101 | | | SX-109 | | C-106 | BY-104 | T-102 | BY-101 | SX-110 | | East Area (| BY-107 | T-103 | BY-102 | SX-111 | | | BY-106 | T-105 | BY-103 | SX-112 | | WESTAREA | BY-110 | T-106 | BY-104 | SX-113 | | S-101 | BY-111 | T-108 | BY-107 | SX-114 | | S-102 | BY-112 | T-109 | BY-108 | SX-115 | | S-103
S-106 | C-101 | T-112 | BY-109 | T. Farm 40 4 lin | | S-107 | C-102 | T-201
T-202 | BY-110 | T-Farm - 16 tanks | | S-107
S-106 | C-102
C-104 | T-203 | BY-111
BY-112 | TX-Farm - 18 tanks | | S-109 | C-107 | T-204 | 01-112 | TY-Farm - 6 tanks | | S-110 | C-108 | 1-204 | C-101 | 11 404 | | \$-111 | C-109 | TX-FARM - 18 tanks | C-101 | U-101
U-103 | | S-112 | C-110 | TY-FARM - 6 tanks | C-102 | U-104 | | 3-112 | C-111 | 11-PARM - 0 GIRS | C-105 | U-105 | | SX-101 | C-112 | U-101 | C-107 | U-106 | | SX-102 | C-201 | U-104 | C-107 | U-110 | | SX-103 | C-202 | U-112 | C-109 | U-112 | | SX-104 | C-203 | U-201 | C-110 | U-201 | | SX-105 | C-204 | U-202 | C-111 | U-202 | | SX-106 | East Area 55 | U-203 | C-112 | U-203 | | OX-100 | | U-204 | C-201 | U-204 | | T-101 | | West Area 53 | C-202 | West Area 60 | | T-104 | | Total 108 | C-203 | TGE 125 | | T-107 | | | C-204 | | | | | | CONTRACTOR SECTIONS OF THE PROPERTY PRO | | | T-111 | Controlled, Clean | | 20 | * | | U-102 | Controlled, Clean | , and Stable (CCS) | | | | U-103 | | , (/ | | | | U-105 | EAST AREA | WEST AREA | | | | U-106 | BX-FARM - 12 Tanks | TX-FARM - 18 tanks | | | | U-107 | | TY FARM - 6 tanks | | | | U-106 | East Area 12 | West Area 24 | | | | U-109 | | 1018 S6 | | | | U-110 | | | | | | U-111 | Note: CCS activitie | es have been deferred | | | | West Ares 29 | | ailable for this work. | | | | Total 40 | | | | | | | | | | | | • | RK . | R-10 | R R | | ## TABLE B-3. SINGLE-SHELL TANKS INTERIM STABILIZATION STATUS November 30, 2001 | | 1 | Interim | | 3333 | <u> </u> | Interim | | 808 | | Interim | | |------------------|-------------------|----------------|------------|------------------|-------------------|--------------------|---------------|------------------|----------------|----------------|------------| | Tank | Tank | Stabil. | Stebil. | Tank | Tenk | Stabil. | Stebil. | Tenk | Tenk | Stabil. | Stabil. | | | integrity | Date (1) | Method | Numbe | | Date (1) | Method | Number | Integrity | Date (1) | Method | | Number
A-101 | SOUND | N/A | Manner 1 | C-101 | ASMD LKR | 11/83 | AR | T-108 | ASMD LKR | 11/78 | AR | | A-102 | SOUND | 06/80 | SN | C-102 | SOUND | 09/95 | JET(2) | T-109 | ASMO LKR | 12/84 | AR | | A-103 | ASMO LKR | 06/88 | AR | C-103 | SOUND | N/A | | T-110 | SOUND | 01/00 (5) | JET | | A-104 | ASMO LKR | 09/78 | AR(2) | C-104 | SOUND | 09/89 | 8N | T-111 | ASMD LKR | 02/95 | JET | | A-105 | ASMO LKR | 07/79 | AR | C-106 | SOUND | 10/95 | AR | T-112 | SOUND | 03/81 | AR(2)(3) | | A-106 | SOUND | 06/82 | AR | C-106 | SOUND | N/A | | T-201 | SOUND | 04/81 | AR (3) | | AX-101 | SOUND | N/A | | C-107 | SOUND | 09/95 | JET | T-202 | SOUND | 06/81 | AR | | AX-102 | ASMD LKR | 09/88 | SN SN | C-108 | SOUND | 03/84
11/83 | AR
AR | T-203
T-204 | SOUND | 04/81
06/81 | AR | | AX-103
AX-104 | SOUND
ASMD LKR | 06/87 | AR | C-109
C-110 | SOUND
ASMD LKR | 06/95 | JET | TX-101 | SOUND | 02/84 | AR | | B-101 | ASMD IKR | 03/81 | 8N | C-111 | ASMD LKR | 03/84 | SN | XX-102 | SOUND | 04/83 | JET | | B-102 | SOUND | 06/85 | SN | C-112 | SOUND | 09/90 | AR | TX-103 | SOUND | 06/83 | JET | | B-103 | ASMD IKR | 02/86 | SN | C-201 | ASMD LKR | 03/62 | AR | TX-104 | SOUND | 09/79 | SN | | B-104 | SOUND | 06/86 | SN | C-202 | ASMD LKR | 08/81 | AR | TX-105 | ASMD LKR | 04/83 | JET | | B-105 | ASMD IKR | 12/84 | AR | C-203 | ASMD LKR | 03/62 | AR | X-106 | SOUND | 06/83 | JET | | B-106 | SOUND | 03/85 | SN | C-204 | ASMD LKR | 09/82 | AR | TX-107 | ASMD LKR | 10/79 | AR | | B-107 | ASMO LKR | 03/85 | SN | S-101 | SOUND | N/A | | TX-108 | SOUND | 03/83 | JET | | B-108 | SOUND | 05/86 | 8N | 8-102 | SOUND | N/A | | TX-109 | SOUND | 04/83 | JET | | B-109 | SOUND | 04/86 | 8N | 8-103 | SOUND | 04/00 | JET (6) | TX-110 | ASMO LKR | 04/83 | JET | | B-110 | ASMO LKR | 12/84 | AR
SN | 8-104
8-105 | SOUND | 12/84
09/88 | JET | TX-111
TX-112 | SOUND | 04/83
04/83 | JET
JET | | B-111
B-112 | ASMO LKR | 06/86
06/86 | SN | S-108 | SOUND | 02/01 | JET (10) | TX-112 | ASMD LKR | 04/83 | JET | | 8-201 | ASMO LKR | 06/81 | AR (3) | 8-107 | SOUND | N/A | 951 (10) | TX-114 | ASMD LKR | 04/63 | JET | | B-202 | SOUND | 06/86 | AR(2) | S-108 | SOUND | 12/96 | JET | TX-115 | ASMD LKR | 09/83 | JET | | B-203 | ASMO LKR | 06/84 | AR | S-109 | SOUND | 06/01 | JET (13) | TX-116 | ASMO LKR | 04/83 | JET | | B-204 | ASMO LKR | 06/84 | AR | S-110 | SOUND | 01/97 | JET | TX-117 | ASMD LKR | 03/83 | JET | | BX-101 | ASMO LKR | 09/76 | AR | 8-111 | SOUND | N/A | | TX-118 | SOUND | 04/83 | JET | | BX-102 | ASMO LKR | 11/78 | AR | 8-112 | SOUND | N/A | | TY-101 | ASMO LKR | 04/83 | JET | | BX-103 | SOUND | 11/83 | AR(2)(3) | 8X-101 | SOUND | N/A | | TY-102 | SOUND | 09/79 | AR | | 8X-104 | SOUND | 09/89 | SN | SX-102 | SOUND | N/A | <u> </u> | TY-103 | ASMO LKR | 02/83 | JET | | BX-106 | SOUND | 03/81 | SN SN | 8X-103 | SOUND | N/A | | TY-104 | ASMO LKR | 11/83 | AR | | BX-106 | SOUND | 07/96 | 8N | SX-104 | ASMO LKR | 04/00 | JET (7) | TY-105 | ASMO LKR | 02/63 | JET | | BX-107 | SOUND | 09/90 | JET | 8X-105 | SOUND | N/A
06/00 | JET (8) | TY-106 | ASMD LKR | 11/78
09/79 | AR
AR | | BX-108
BX-109 | ASMD LKR
SOUND | 07/79
33117 | SN
JET | 5X-106
5X-107 | ASMD LKR | 10/79 | AR | U-102 | SOUND | N/A | | | BX-110 | ASMD LKR | 08/86 | SN | 5X-108 | ASMD LKR | 08/79 | AR | U-103 | SOUND | 09/00 | JET (9) | | BX-111 | ASMD LKR | 03/96 | JET | 5X-109 | ASMD LKR | 05/81 | AR | U-104 | ASMD LKR | 10/78 | AR | | BX-112 | BOUND | 09/90 | JET | 8X-110 | ASMD LKR | 06/79 | AR | U-105 | SOUND | 03/01 | JET (11) | | BY-101 | SOUND | 06/84 | JET | 8X-111 | ASMD LKR | 07/79 | SN | U-106 | SOUND | 03/01 | JET (12) | | BY-102 | SOUND | 04/96 | JET | 8X-112 | ASMD LKR | 07/79 | AR | U-107 | SOUND | N/A | | | BY-103 | ASMD LKR | 11/97 | JET | 8X-113 | ASMD LKR | 11/78 | AR | W-108 | SOUND | N/A | | | BY-104 | SOUND | 01/86 | JET | 8X-114 | ASMD LKR | 07/79 | AR | U-109 | SOUND | N/A | ـــــــــا | | 8Y-105 | ASMD LKR | N/A | | 8X-115 | ASMD LKR | 09/78 | AR(3) | U-110 | ASMO LKR | 12/84 | AR | | BY-106 | ASMO LKR | N/A | | T-101 | ASMD LKR | 04/93 | 8N | U-111 | SOUND | N/A | — | | BY-107 | ASMO LKR | 07/79 | JET | T-102 | SOUND | 03/81 | AR(2)(3) | U-112 | ASMD LKR | 09/79 | AR | | BY-108 | ASMD LKR | 02/86
07/97 | JET | T-103 | SOUND | 11/83
11/99 (4) | JET | U-201 | SOUND
SOUND | 06/79
08/79 | SN | | BY-109
BY-110 | SOUND | 01/95 | JET
JET | T-104 | SOUND | 06/87 | AR | U-202 | SOUND | 08/79 | AR | | BY-110 | SOUND | 01/95 | JET | T-106 | ASMD LKR | 08/81 | AR | U-204 | SOUND | 08/79 | 8N | | BY-112 | SOUND | 06/84 | JET | T-107 | ASMD LKR | 05/96 | JET | | | | | | LEGEND: | | | · | ***** | HANN PAG | 1 20120 |
 ' | | | | | | AR = | Administrative | dv interim e | tabilizad | | | | | Interim S | itebilized Tan | ke | 129 | | JET = | Saltwell jet pu | • | | nable inter | titial liquid | | | | Interim Stabil | | 20 | | SN = | Supernatent p | | | | | | | | | | _, | | N/A = | Not yet interin | • | | • | | | | Total | Single-Shell | Tenks | 149 | | ASMD | • | | | | | | | | | | | | 1 | Assumed Lesi | (er | | | | | 1 | | | | | | | | | | · | | | | • | | | | #### TABLE B-3. SINGLE-SHELL TANKS INTERIM STABILIZATION STATUS #### Footnotes: (in chronological order) - (1) These dates indicate when the tanks were actually interim stabilized. In some cases, the official interim stabilization documents were issued at a later date. - (2) Although tanks 241-BX-103, T-102, and T-112 met the interim stabilization administrative procedure at the time they were stabilized, they no longer meet the recently updated administrative procedure. The tanks were re-evaluated in 1996 and letter 9654456, J. H. Wicks to J. K. McClusky, DOE-RL, dated September 1996, was issued which recommended that no further pumping be performed on these tanks, based on an economic evaluation. Document RPP-5556, Rev. 0, "Updated Drainable Interstitial Liquid Volume Estimates for 119 Single-Shell Tanks Declared Stabilized," J. G. Field, February 7, 2000, states that five tanks no longer meet the stabilization criteria (241-BX-103, T-102, and T-112 exceed the supernatant criteria, and BY-103 and C-102 exceed the Drainable Interstitial Liquid [DIL]criteria). An intrusion investigation was completed on tank 241-B-202 in 1996 because of a detected increase in surface level. As a result of this investigation, it was determined that this tank no longer meets the recently updated administrative procedure for 200 series tanks. - (3) Earlier versions of HNF-SD-RE-TI-178, "SST Stabilization Record," indicated that original Interim Stabilization data are missing on four tanks: 241-B-201, T-102, T-112, and T-201. HNF-SD-RE-TI-178, Rev. 7, dated February 9, 2001, added three additional tanks to those missing stabilization data: 241-A-104, BX-101, and SX-115. - (4) Tank 241-T-104 was Interim Stabilized on November 19, 1999. In-tank video taken October 7, 1999, shows the surface is clearly sludge-type waste with no saltcake present. No visible supernatant on the surface. Waste surface appears level across tank with numerous cracks. There is a minimal collapsed area around the saltwell screen, with no visible bottom. - (5) Tank 241-T-110 was Interim Stabilized on January 5, 2000, after a major equipment failure. An in-tank video taken October 7, 1999 (pumping was discontinued on August 12, 1999), showed the surface of this tank as smooth, brown-tinted sludge with visible cracks. - (6) Tank 241-S-103 was declared Interim Stabilized April 18, 2000. The surface is a rough, black and brown-colored waste with yellow patches of saltcake visible throughout. The surface appears to be damp, but not saturated, and shows irregular cracking typically seen with surfaces beginning to dry out. A pool of supernatant liquid (10 feet in diameter, 5 feet deep, 1.0 Kgallons) is visible from video observations. - (7) Tank 241-SX-104 was declared Interim Stabilized April 26, 2000, after a major equipment failure. The surface is a rough, yellowish gray saltcake waste with an irregular surface of visible cracks and shelves that were created as the surface dried out. The waste surface appears to be dry and shows no standing liquid within the tank. - (8) Tank 241-SX-106 was declared Interim Stabilized May 5, 2000. The surface is a smooth, white-colored saltcake waste. The surface level slopes slightly from the tank sidewall down to a large depression in the center of the tank. A second depression surrounds both saltwell screens and an abandoned Liquid Observation Well (LOW). The waste surfaces appear dry and show no standing liquid within the tank. - (9) Tank 241-U-103 was declared Interim Stabilized September 11, 2000. The surface is a brown colored waste with irregular patches of white salt crystal. Approximately 30% of the waste surface is covered by the salt formations. The surface level slopes slightly from the tank sidewall down to the first of two depressions in the center of the tank. The waste surface appears dry and shows signs of drying and cracking due to saltwell pumping. LOW readings indicate an average adjusted ILL of 60.2 inches. There is a small pool of supernatant estimated to be 500 gallons. - (10) Tank 241-S-106 was declared Interim Stabilized on February 1, 2001. The surface is a rough, brown and yellow-colored saltcake waste with an irregular surface of mounds and saltcake crystals that were created as the surface was dried out. The waste surface appears to be dry and shows no standing liquid within the tank. There is no evidence of supernatant from video observations. The waste surface slopes gradually from the tank sidewall to the depression in the center of the tank. The depression surrounds both of the saltwell screens, but does not extend around the temperature probe and ENRAF devices. - (11) Tank 241-U-105 was declared Interim Stabilized on March 29, 2001, after a major equipment failure. The surface is a brown colored waste with irregular patches of white salt crystal. Approximately 15% of the surface is covered by the salt formations. The surface level slopes to the first of two depressions in the center of the tank; the first depression is cone shaped and estimated to be 22 feet in diameter. The second depression, inside the first, is cylindrically shaped and has a diameter of approximately 10 feet. Both depressions are centered on the saltwell screen. The waste surface appears dry and shows signs of cracking due to saltwell pumping. There is no visible liquid in the tank. - (12) Tank 241-U-106 was declared Interim Stabilized on March 9, 2001. The surface is a dark brown/yellow colored waste that is covered with many stalagmite-type crystals growing on the surface. The crystals cover approximately 75% of the waste surface. The waste surface is irregular, appears dry, and shows only minimal signs of cracking due to saltwell pumping. The supernatant pool is estimated to be 13.3 feet in diameter based on the visible portion of the saltwell screen. The pool is centered on the saltwell screen. - (13) Tank 241-S-109 was declared Interim Stabilized on June 11, 2001. The surface is primarily a white colored salt crystal with small patches of dark salt visible due to saltwell/sampling activities. Approximately 95% of the waste surface is covered by the salt formations. The surface level slopes slightly from the tank sidewall down to a depression in the center of the tank. The waste surface appears rough and dry and shows signs of cracking and slumping due to saltwell pumping. ## TABLE B-4. SINGLE-SHELL TANK INTERIM STABILIZATION MILESTONES November 30, 2001 New single-shell tank interim stabilization milestones were negotiated in 1999 and are identified in the "Consent Decree." The Consent Decree was approved on August 16, 1999. ### CONSENT DECREE Attachments A-1 and A-2 The following table is the schedule for pumping liquid waste from the remaining twenty-nine (29) single-shell tanks. This schedule is enforceable pursuant to the terms of the Decree except for the "Projected Pumping Completion Dates," which are estimates only and not enforceable. Also, this schedule does not include tank C-106. | Tank | Project Pumping | Actual Pumping | Projected Pumping | Interim Stabilization | |-----------------|-------------------------|------------------------|--------------------------|-----------------------| | Designation | Start Date | Start Date | Completion Date | Date | | 1. T-104 | Already initiated | March 24, 1996 | May 30, 1999 | November 19, 1999 | | 2. T-110 | Already initiated | May 12, 1997 | May 30, 1999 | January 5, 2000 | | 3. SX-104 | Already initiated | September 26, 1997 | December 30, 2000 | April 26, 2000 | | 4. SX-106 | Already initiated | October 6, 1998 | December 30, 2000 | May 5, 2000 | | 5. S-102 | Already initiated | March 18, 1999 | March 30, 2001 | | | 6. S-106 | Already initiated | April 16, 1999 | March 30, 2001 | February 1, 2001 | | 7. <u>S-103</u> | Already initiated | June 4, 1999 | March 30, 2001 | April 18, 2000 | | 8. U-103 * | June 15, 2000 | September 26, 1999 | April 15, 2002 | September 11, 2000 | | 9. U-105 * | June 15, 2000 | December 10, 1999 | April 15, 2002 | March 29, 2001 | | 10. U-102 * | June 15, 2000 | January 20, 2000 | April 15, 2002 | | | 11. U-109 * | June 15, 2000 | March 11, 1000 | April 15, 2002 | | | 12. A-101 | October 30, 2000 | May 6, 2000 | September 30, 2003 | | | 13. AX-101 | October 30, 2000 | July 29, 2000 | September 30, 2003 | | | 14. SX-105 | March 15, 2001 | August 8, 2000 | February 28, 2003 | | | 15. SX-103 | March 15, 2001 | October 26, 2000 | February 28, 2003 | | | 16. SX-101 | March 15, 2001 | November 22, 2000 | February 28, 2003 | | | 17. U-106 * | March 15, 2001 | August 24, 2000 | February 28, 2003 | March 9, 2001 | | 18. BY-106 | July 15, 2001 | July 11, 2001 | June 30, 2003 | | | 19. BY-105 | July 15, 2001 | July 11, 2001 | June 30, 2003 | | | 20. U-108 | December 30, 2001 | | August 30, 2003 | | | 21. U-107 | December 30, 2001 | September 29, 2001 | August 30, 2003 | | | 22. S-111 | December 30, 2001 | | August 30, 2003 | | | 23. SX-102 | December 30, 2001 | | August 30, 2003 | | | 24. U-111 | November 30, 2001 | | September 30, 2003 | | | 25. S-109 | November 30, 2002 | September 23, 2000 | September 30, 2003 | June 11, 2001 | | 26. S-112 | November 30, 2002 | | September 30, 2003 | T | | 27. S-101 | November 30, 2002 | | September 30, 2003 | | | 28. S-107 | November 30, 2002 | | September 30, 2003 | | | 29. C-103 | The Decree states that | no later than December | 30, 2000, DOE will de | termine whether the | | | | | mped from this tank tog | | | | | | ping of this tank; the p | | | | | | vided in
Section VI of | | | | | | OCE on December 22, 2 | | | | requirements of this mi | ilestone. | | | ^{*} Tanks containing organic complexants. Completion of Interim Stabilization. DOE will complete interim stabilization of all 29 single-shell tanks listed above by September 30, 2004. #### Percentage of Pumpable Liquid Remaining to be Removed: | 93% of Total Liquid | 9/30/1999 (1) | |---|---------------| | 38% of Organic Complexed Pumpable Liquids | 9/30/2000 (2) | | 5% of Organic Complexed Pumpable Liquids | 9/30/2001 (3) | | 18% of Total Liquid | 9/30/2002 | | 2% of Total Liquid | 9/30/2003 | The "percentage of pumpable liquid remaining to be removed" is calculated by dividing the volume of pumpable liquid remaining to be removed from tanks not yet interim stabilized by the sum of the total amount of liquid that has been pumped and the pumpable liquid that remains to be pumped from all tanks. - (1) The Pumpable Liquid Remaining was reduced to 88% by September 30, 1999. Reference LMHC- 9957926 R1, D. I. Allen, LHMC, to D. C. Bryson, DOE-ORP, dated October 26, 1999. - (2) The Complexed Pumpable Liquid Remaining was reduced to 38% by September 15, 2000. Reference CHG-0004752, R. F. Wood, CHG, to J. J. Short, DOE-ORP, dated September 13, 2000. - (3) Reference CHG-0104859, R. F. Wood, CHG, to J. S. O'Connor, DOE-ORP, dated September 20, 2001: this reference states that tanks U-102 and U-109 appear to have met the interim stabilization criteria, thereby reducing the Complexed Pumpable Liquid Remaining to zero; however, it may take three or more months before the settling waste levels approach equilibrium so that the final liquid levels and volumes can be calculated. TABLE B-5. SINGLE-SHELL TANK LEAK VOLUME ESTIMATES (Sheet 1 of 6) November 30, 2001 | | Date Declared Confirmed or | Volume | Associated
KiloCuries | Interim
Stabilizaci | ا شعد ا | Estimate | |-----------------------------|----------------------------|-------------------------|--------------------------|----------------------------|----------------------|------------------| | Tank Number | Assumed Leaker (3) | Gallons (2) | 137 Cs (9) | Date (11) | Updated | Reference | | 241-A-103 | 1987 | 5500 (8) | | 06/88 | 1987 | (j) | | 241-A-104
241-A-105 (1) | 1975
1963 | 500 to 2500
10000 to | 0.8 to 1.8 (q) | 09/78 | 1983 | (p)(q) | | L41-X-100 (1) | 7000 | 277000 | 85 to 760 (b) | 07/79 | 1991 | (b)(a) | | 241-AX-102 | 1988 | 3000 (8) | | 09/88 | 1989 | (h) | | 241-AX-104
241-B-101 | 1977
1974 | (6)
(6) | | 08/81
03/81 | 1989
1989 | (g) | | 241-B-103 | 1978 | (6) | | 02/85 | 1989 | (g)
(g) | | 241-B-105
241-B-107 | 1978
1980 | (6)
8000 (8) | | 12/84
03/85 | 1989
1986 | (g)
(d)(f) | | 41-B-110 | 1981 | 10000 (8) | | 03/85 | 1986 | (d) | | 241-B-111
241-B-112 | 1978
1978 | (6)
2000 | | 06/85 | 1989 | (g) | | !41-B-201 | 1980 | 1200 (8) | | 05/85
08/81 | 1989
1984 | (g)
(e)(f) | | !41-B-203
!41-B-204 | 1983
1984 | 300 (8)
400 (8) | | 06/84 | 1986 | (d) | | 41-BX-101 | 1972 | 400 (8)
(6) | | 06/84
09/78 | 1989
1989 | (g) | | 41-BX-102 | 1971 | 70000 | 50 (1) | 11/78 | 1986 | (g)
(d) | | 41-BX-108
41-BX-110 | 1974
1976 | 2500 | 0.5 (ii) | 07/79 | 1986 | (d) | | 41-BX-111 | 1984 (13) | (6)
(6) | | 08/85
03/95 | 1 989
1993 | (g)
(g) | | 41-BY-103 | 1973 | <5000 | | 11/97 | 1983 | (a) | | 41-BY-105
41-BY-106 | 1984
1984 | - (6)
- (6) | | N/A | 1989 | (g) | | 41-BY-107 | 1984 | 15100 (8) | | N/A
07/79 | 1989
1989 | (g)
(g) | | 41-BY-108 | 1972 | <5000 | | 02/85 | 1983 | (a) | | 41-C-101
41-C-110 | 1980
1984 | 20000 (8)(1
2000 | O) | 11/83 | 1986 | (d) | | 41-C-111 | 1968 | 5500 (8) | | 05/95
03/84 | 1989
1989 | (g)
(a) | | 41-C-201 (4) | 1988 | 550 | | 03/82 | 1987 | (g)
(i) | | 41-C-202 (4)
41-C-203 | 1988
1984 | 450
400 (8) | | 08/81
03/82 | 1987
1986 | (i)
(d) | | 41-C-204 (4) | 1988 | 350 | | 09/82 | 1987 | (i) | | 41-5-104 | 1968 | 24000 (8) | | 12/84 | 1989 | (g) | | 41-SX-104
41-SX-107 | 1988
1964 | 6000 (8)
<5000 | | 04/00 | 1988 | (k) | | 11-SX-108 (5)(14 | | 2400 to | 17 to 140 | 10/79
08/79 | 1983
1991 | (e)
(m)(q)(t) | | 41-SX-109 (5)(14 | 1965 | 35000 | (m)(q)(t) | | | • | | \$1-SX-110 | 1976 | < 10000
5500 (8) | <40 (n)(t) | 05/81
08/79 | 1992
1989 | (n)(t)
(g) | | 11-SX-111 (14) | 1974 | 500 to 2000 | 0.6 to 2.4 (I)(q)(t) | 07/79 | 1986 | (d)(q)(t) | | l1-SX-112 (14)
l1-SX-113 | 1969
1962 | 30000
15000 | 40 (I)(t)
8 (I) | 07/79 | 1986 | (d)(t) | | 11-SX-114 | 1972 | ·- (6) | a (I) | 11/78
07/79 | 1986
1989 | (d)
(g) | | 11-SX-115 | 1965 | 50000 | 21 (o) | 09/78 | 1992 | (0) | | 11-T-101
11-T-103 | 1992
1974 | 7500 (8)
<1000 (8) | | 04/93 | 1992 | (p) | | 11-T-106 | 1973 | 115000 (8) | 40 (1) | 11/83
08/81 | 1989
1986 | (g)
(d) | | 11-T-107
11-T-108 | 1984 | - (6) | • | 05/96 | 1989 | (g)
(f) | | 11-T-108 | 1974
1974 | <1000 (8)
<1000 (8) | | 11/78
12/84 | 1980
1 989 | (f)
(g) | | I1-T-111 | 1979, 1994 (12) | <1000 (8) | | 02/95 | 1994 | (f)(r) | | 11-TX-105
11-TX-107 (5) | 1977 | (6) | | 04/83 | 1989 | (g) | | 11-TX-110 | 1984
1977 | 2500
(6) | | 10/7 9
04/83 | 1986
1989 | (d)
(g) | | 11-TX-113 | 1974 | (6) | | 04/83 | 1989 | (g) | | 11-TX-114
11-TX-115 | 1974
1977 | (6)
(6) | | 04/83
09/83 | 1989
1989 | (g) | | 11-TX-116 | 1977 | - (6) | | 04/83 | 1989 | (g)
(g) | | 11-TX-117 | 1977 | (6) | | 03/83 | 1989 | (0) | | 11-TY-101
11-TY-103 | 1973
1973 | <1000 (8)
3000 | 0.7 (1) | 04/83
02/83 | 1980
1 986 | (f) | | I1-TY-104 | 1981 | 1400 (8) | 2.7 til | 11/83 | 1986 | (d)
, (d) | | l1-TY-105
l1-TY-106 | 1960
1959 | 35000
20000 | 4 (1) | 02/83 | 1986 | (d) | | 11-U-101 | 1959 | 30000 | 2 (I)
20 (I) | 11/78 | 1986 | (d) | | 11-U-104 | 1961 | 55000 | 0.09 (1) | 09/79
10/78 | 1986
1986 | (d)
(d) | | 11-U-110 | 1975 | 5000 to 8100 (8) | 0.05 (q) | 12/84 | 1986 | (d)(q) | | 11-U-112 | 1980 | 8500 (8) | | 09/79 | 1986 | (d) | #### TABLE B-5. SINGLE-SHELL TANKS LEAK VOLUME ESTIMATES #### Footnotes: - (1) Current estimates [see Reference (b)] are that 610 Kgallons of cooling water was added to tank 241-A-105 from November 1970 to December 1978 to aid in evaporative cooling. In accordance with <u>Dangerous Waste Regulations</u> [Washington Administrative Code 173-303-070 (2)(a)(ii), as amended, Washington State Department of Ecology, 1990, Olympia, Washington], any of this cooling water that has been added and subsequently leaked from the tank must be classified as a waste and should be included in the total leak volume. In August 1991, the leak volume estimate for this tank was updated in accordance with the WAC regulations. Previous estimates excluded the cooling water leaks from the total leak volume estimates because the waste content (concentration) in the cooling water which leaked should be much less than the original liquid waste in the tank (the sludge is relatively insoluble). The total leak volume estimate in this report (10 to 277 Kgallons) is based on the following (see References): - 1. Reference (b) contains an estimate of 5 to 15 Kgallons for the initial leak prior to August 1968. - 2. Reference (b) contains an estimate of 5 to 30 Kgallons for the leak while the tank was being sluiced from August 1968 to November 1970. - 3. Reference (b) contains an estimate of 610 Kgallons of cooling water added to the tank from November 1970 to December 1978, but it was estimated that the leakage was small during this period. This reference contains the statement "Sufficient heat was generated in the tank to evaporate most, and perhaps nearly all, of this water." This results in a low estimate of zero gallons leakage from November 1970 to December 1978. - 4. Reference (c) contains an estimate the 378 to 410 Kgallons evaporated out of the tank from November 1970 to December 1978. Subtracting the minimum evaporation estimate from the cooling water added estimate provides a range from 0 to 232 Kgallons of cooling water leakage from November 1970 to December 1978. | | Low Estimate | <u>High Estimate</u> | |--------------------------------|--------------|----------------------| | Prior to August 1968 | 5,000 | 15,000 | | August 1968 to November 1970 | 5,000 | 30,000 | | November 1970 to December 1978 | 0 | 232,000 | | Totals | 10,000 | 277,000 | - These leak volume estimates <u>do not</u> include (with some exceptions), such things as: (a) cooling/raw water leaks, (b) intrusions (rain infiltration) and subsequent leaks, (c) leaks inside the tank farm but not through the tank liner (surface leaks, pipeline leaks, leaks at the joint for the overflow or fill lines, etc.), and (d) leaks from catch tanks, diversion boxes, encasements, etc. - (3) In many cases, a leak was suspected long before it was identified or confirmed. For example, Reference (d) shows that tank 241-U-104 was suspected of leaking in 1956. The leak was confirmed in 1961. This report lists the "assumed leaker" date of 1961. Using <u>present</u> standards, tank 241-U-104 would have been declared an assumed leaker in 1956. In 1984, the criteria designations of "suspected leaker," "questionable integrity," "confirmed leaker," "declared leaker," "borderline and dormant," were merged into one category now reported as "assumed leaker." See Reference (f) for explanation of when, how long, and how fast some of the tanks leaked. It is highly likely that there have been undetected leaks from single-shell tanks because of the nature of their design and instrumentation. - (4) The leak volume estimate date for these tanks is before the declared leaker date because the tank was in a suspected leaker or questionable integrity status; however, a leak volume had been estimated prior to the tank being reclassified. - (5) The
increasing radiation levels in drywells and laterals associated with these three tanks could be indicating continuing leak or movement of existing radionuclides in the soil. There is no conclusive way to confirm these observations. (Repeat spectral drywell scans are not part of the current Tank Farm leak detection program but can be run on request a special needs arise. A select subset of drywells is routinely monitored by the Vadose Zone Characterization Project to assess movement of gamma-emitting radionuclides in the subsurface. There are currently no functioning laterals and no plan to prepare them for use). - (6) Methods were used to estimate the leak volumes from these 19 tanks based on the <u>assumption</u> that their cumulative leakage is approximately the same as for 18 of the 24 tanks identified in footnote (9). For more details see Reference (g). The total leak volume estimate for these tanks is 150 Kgallons (rounded to the nearest Kgallon), for an average of approximately 8 Kgallons for each of 19 tanks. - (7) The total has been rounded to the nearest 50 Kgallons. Upper bound values were used in many cases in developing these estimates. It is likely that some of these tanks have not actually leaked. - (8) Leak volume estimate is based solely on observed liquid level decreases in these tanks. This is considered to be the most accurate method for estimating leak volumes. - (9) The curie content shown is as listed in the reference document and is <u>not</u> decayed to a consistent date: therefore, a cumulative total is inappropriate. - (10) Tank 241-C-101 experienced a liquid level decrease in the late 1960s and was taken out of service and pumped to a minimum heel in December 1969. In 1970, the tank was classified as a "questionable integrity" tank. Liquid level data show decreases in level throughout the 1970s and the tank was saltwell pumped during the 1970s, ending in April 1979. The tank was reclassified as a "confirmed leaker" in January 1980. See References (q) and (r); refer to Reference (s) for information on the potential for there to have been leaks from other C-farm tanks (specifically, C-102, C-103, and C-109). - (11) These dates indicate when the tanks were declared to be interim stabilized. In some cases, the official interim stabilization documents were issued at a later date. Also, in some cases, the field work associated with interim stabilization was completed at an earlier date. - (12) Tank 241-T-111 was declared an "assumed re-leaker" on February 28, 1994, due to a decreasing trend in surface level measurement. This tank was pumped, and interim stabilization completed on February 22, 1995. - (13) Tank 241-BX-111 was declared an "assumed re-leaker" in April 1993. Preparations for pumping were delayed, following an administrative hold placed on all tank farm operations in August 1993. Pumping resumed and the tank was declared interim stabilized on March 15, 1995. - The leak volume and curie release estimates on tanks 241- SX-108, SX-109, SX-111, and SX-112 have been re-evaluated using a Historical Leak Model [see Reference (t)]. In general, the model estimates are much higher than the values listed in the table, both for volume and curies released. The values listed in the table do not reflect this revised estimate because, "In particular, it is worth emphasizing that this report was never meant to be a definitive update for the leak baseline at the Hanford Site. It was rather meant to be an attempt to view the issue of leak inventories with a new and different methodology." (This quote is from the first page of the referenced report). - (15) In July 1998, the Washington State Department of Ecology (Ecology) directed the U. S. Department of Energy (DOE) to develop corrective action plans for eight single-shell tank farms (B/BX/BY/S/SX/T/TX/TY) where groundwater contamination likely originated from tank farm operations. A Tri-Party Agreement milestone (M-45 series) was developed that established a formalized approach for evaluating impacts on groundwater quality of loss of tank wastes to the vadore zone underlying these tank farms. Planning documents have been completed for the S, SX, B, BX, and BY tank farms and will be completed shortly for the T, TX, and TY farms. The phase 1 field investigation is near completion in the S and SX tank farms and has begun in the B, BX, and BY farms. Field work is anticipated in FY-02 for the T, TX, and TY tank farms. The remaining four single-shell tank farms are expected to be included in corrective action plans in the near future. All of the information included in this appendix is currently under review and significant revisions are anticipated. Recently, major tank farm vadose zone investigative efforts (such as the baseline spectral gamma-ray logging of all drywells in all single-shell tank farms, as well as drilling and sampling in the SX tank farm) were completed. This appendix will be revised as a better understanding of past tank leak events is developed. SST Vadose Zone Project drilling and testing activities near tank 241-BX-102 were completed in March 2001. A borehole (299-E33-45) was drilled through the postulated uranium plume resulting from the 1951 tank 241-BX-102 overfill event to confirm the presence of uranium, define its present depth, and survey other contaminants of interest such as Tc-99. Thirty-five split-spoon samples were collected for laboratory analyses. This borehole was decommissioned after collection and analysis of groundwater samples. Borehole W33-46, adjacent to tank 241-B-110, was drilled to a depth of approximately 190 feet in July 2001. Soil samples were collected for analysis as part of the tank farm vadose zone characterization activities. During decommissioning, this borehole was completed as a vadose zone monitoring structure. Work was accomplished in cooperation with scientists from Idaho National Engineering and Environmental Laboratory and Pacific Northwest National Laboratory. This borehole is now the first fully instrumented vadose zone hydrographic monitoring structure to be completed in a Hanford site tank farm. #### References: - (a) Murthy, K. S., et al., June 1983, Assessment of Single-Shell Tank Residual Liquid Issues at Hanford Site, Washington, PNL-4688, Pacific Northwest Laboratory, Richland, Washington. - (b) WHC, 1991a, Tank 241-A-105 Leak Assessment, WHC-MR-0264, Westinghouse Hanford Company, Richland, Washington, - (c) WHC, 1991b, Tank 241-A-105 Evaporation Estimate 1970 Through 1978, WHC-EP-0410, Westinghouse Hanford Company, Richland, Washington. - (d) Smith, D. A., January 1986, Single-Shell Tank Isolation Safety Analysis Report, SD-WM-SAR-006, Rev. 1, Westinghouse Hanford Company, Richland, Washington. - (e) McCann, D. C., and T. S. Vail, September 1984, Waste Status Summary, RHO-RE-SR-14, Rockwell Hanford Operations, Richland, Washington. - (f) Catlin, R. J., March 1980, Assessment of the Surveillance Program of the High-Level Waste Storage Tanks at Hanford, Hanford Engineering Development Laboratory, Richland, Washington. - (g) Baumhardt, R. J., May 15, 1989, Letter to R. E. Gerton, U.S. Department of Energy-Richland Operations Office, Single-Shell Tank Leak Volumes, 8901832B R1, Westinghouse Hanford Company, Richland, Washington. - (h) WHC, 1990a, Occurrence Report, Surface Level Measurement Decrease in Single-Shell Tank 241-AX-102, WHC-UO-89-023-TF-05, Westinghouse Hanford Company, Richland, Washington. - (i) Groth, D. R., July 1, 1987, Internal Memorandum to R. J. Baumhardt, Liquid Level Losses in Tanks 241-C-201, -202 and -204, 65950-87-517, Westinghouse Hanford Company, Richland, Washington. - (j) Groth, D. R., and G. C. Owens, May 15, 1987, Internal Memorandum to J. H. Roecker, *Tank 103-A Integrity Evaluation*, Westinghouse Hanford Company, Richland, Washington. - (k) Dunford, G. L., July 8, 1988, Internal Memorandum to R. K. Welty, Engineering Investigation: Interstitial Liquid Level Decrease in Tank 241-SX-104, 13331-88-416, Westinghouse Hanford Company, Richland, Washington. - (1) ERDA, 1975, Final Environmental Statement Waste Management Operations, Hanford Reservation, Richland, Washington, ERDA-1538, 2 vols., U.S. Energy Research and Development Administration, Washington, D.C. - (m) WHC, 1992a, Tank 241-SX-108 Leak Assessment, WHC-MR-0300, Westinghouse Hanford Company, Richland, Washington. - (n) WHC, 1992b, Tank 241-SX-109 Leak Assessment, WHC-MR-0301, Westinghouse Hanford Company, Richland, Washington. - (o) WHC, 1992c, Tank 241-SX-115 Leak Assessment, WHC-MR-0302, Westinghouse Hanford Company, Richland, Washington. - (p) WHC, 1992d, Occurrence Report, Apparent Decrease in Liquid Level in Single Shell Underground Storage Tank 241-T-101, Leak Suspected; Investigation Continuing, RL-WHC-TANKFARM-1992-0073, Westinghouse Hanford Company, Richland, Washington. - (q) WHC,1990b, A History of the 200 Area Tank Farms, WHC-MR-0132, Westinghouse Hanford Company, Richland, Washington. - (r) WHC, 1993a, Assessment of Unsaturated Zone Radionuclide Contamination Around Single-Shell Tanks 241-C-105 and 241-C-106, WHC-SD-EN-TI-185, REV OA, Westinghouse Hanford Company, Richland, Washington. - (s) WHC, 1994, Occurrence Report, Apparent Liquid Level Decrease in Single Shell Underground Storage Tank 241-T-111; Declared an Assumed Re-Leaker, RL-WHC-TANKFARM-1994-0009, Westinghouse Hanford Company, Richland, Washington. - (t) HNF, 1998, Agnew, S. F., and R. A. Corbin, August 1998, Analysis of SX Farm Leak Histories Historical Leak Model (HLM), HNF-3233, Rev. 0, Los Alamos National Laboratory, Los Alamos, New Mexico ## TABLE B-6. SINGLE-SHELL TANKS MONITORING COMPLIANCE STATUS 149 Tanks November 30, 2001 #### All Single-Shell Tanks were in compliance for this month. | Legend: | | |--------------|--| | O/C | Noncompliance with applicable documentation | | N/A | Not Applicable (not monitored, or no monitoring schedule) | |
None | Applicable equipment not installed | | LOW | LOW reading taken by Neutron Probe | | | (Exception: Tank AX-101 taken by gamma sensors) | | POP | Plant Operating Procedure, TO-040-650 | | MT/FIC/ENRAF | Surface level measurement devices | | OSD | Operating Specification Document OSD-T-151-00013, -00030, and -00031 | | FSAR/TSR | Final Safety Analysis Report/Technical Safety Requirements | #### Notes: All Dome Elevation Survey monitoring is in compliance. Drywell monitoring is no longer required. Psychrometrics monitoring is on an as needed basis. In-tank photos/videos are taken on an as needed basis. ### TABLE B-7. TEMPERATURE MONITORING November 30, 2001 #### SINGLE-SHELL TANKS WITH HIGH HEAT LOADS (>26,000 Btu/hr) Twelve single-shell tanks have been identified as having high heat loads, of which nine tanks have other characteristics that require temperature surveillance (HNF-SD-WM-TSR-006, Tank Farm Technical Safety Requirements). In an analysis, WHC-SD-WM-SARR-010, Rev. 1, Heat Removal Characteristics of Waste Storage Tanks, Kummerer, 1995, it was estimated that these nine tanks have heat sources >26,000 Btu/hr, which is the criterion for determining high heat load tanks. Temperatures in these tanks did not exceed the Technical Safety Requirements (TSR) for this month. The tanks are monitored by TMACS. | | <u>Tank No.</u> | | |-----------|-----------------|--------| | C-106 (1) | SX-108 | SX-111 | | SX-103 | SX-109 | SX-112 | | SX-107 | SX-110 | SX-114 | (1) The final thermal analysis report for tank C-106 was issued August 9, 2000 (RPP-6463, Rev. 0) and concluded that the best estimate for C-106 was between 7,000 and 11,000 Btu/hr, therefore, this tank no longer meets the criterion for a high heat load tank. An AB Amendment is required to revise the temperature control limits and monitoring frequency for C-106. It is expected this AB Amendment will be approved by ORP in December 2001. #### Active ventilation: There are 13 SX tanks on active ventilation (SX-101 through SX-114, with the exception of SX-113). Eight of these SX tanks are on the high heat load tank list – see above. #### SINGLE-SHELL TANKS WITH LOW HEAT LOADS (<26,000Btu/hr) There are 137 low heat load tanks. Temperatures in tanks connected to TMACS are monitored by TMACS; temperatures in those tanks not yet connected to TMACS are manually taken semiannually in January and July. These temperatures have been within historical ranges for the applicable tank. No temperatures have been obtained for several years in the 14 tanks listed below. Most of these tanks have no thermocouple trees. | | | I dilk INO. | | | | | |--------|--------|-------------|--------|--------|--|--| | BX-104 | C-104 | T-102 | TX-110 | TX-117 | | | | BY-102 | C-204 | T-105 | TX-114 | U-104 | | | | BY-109 | SX-115 | TX-101 | TX-116 | | | | Took No. This page intentionally left blank #### APPENDIX C #### MISCELLANEOUS UNDERGROUND STORAGE TANKS AND SPECIAL SURVEILLANCE FACILITIES ### TABLE C-1. EAST AND WEST AREA MISCELLANEOUS UNDERGROUND STORAGE TANKS AND SPECIAL SURVEILLANCE FACILITIES ACTIVE - still running transfers through the associated diversion boxes or pipeline encasements November 30, 2001 | 127.4 | CTE | |-------|-------| | WA | 31 P. | | | | | WASIE | | | |--------------------|-----------------|--|-----------|----------------------|---| | EACILITY | LOCATION | PURPOSE (receives waste from:) | (Gallons) | MONITORED BY | REMARKS | | EAST AREA | | | | | | | 241-A-302-A | A Farm | A-151 DB | 668 | SACS/ENRAF/Manually | Pumped to AW-105 7/00 | | 241-ER-311 | B Plent | ER-151, ER-152 DB | 2152 | SACS/ENRAF/Manually | | | 241-AZ-151 | AZ Farm | AZ-702 condensate | 2340 | SACS/ENRAF/TMACS | Volume changes daily - pumped to AZ-101 or AZ-102 as needed. | | 241-AZ-154 | AZ Farm | | 25 | SACS/MT | | | 244-BX-TK/SMP | BX
Complex | DCRT - Receives from several farms | 24086 | SACS/MT | Using Manual Tape for tank/sump. Pumped several times 7/01 to 11/01. Sump O/S 2/5/01. | | 244-A-TK/SMP | A Complex | DCRT - Receives from several farms | 7569 | MCS/SACS/WTF | WTF - pumped 3/99 to AP-108 | | A-350 | A Farm | Collects drainage | 257 | MCS/SACS/WTF | WTF (uncorrected) pumped as needed | | AR-204 | AY Farm | Tanker trucks from various facilities | 360 | DIP TUBE | Alarms on SACS-pumped to AP-108, 7/00 | | A-417 | A Farm | | 13814 | SACS/WTF | Pumped 4/98; WTF 0/S 6/01; readings taken with zip cord | | CR-003-TK/SUMP | C Farm | DCRT | 2984 | MT/ZIP CORD | Zip cord in sump O/S, 3/96; water intrusion, 1/98 | | WEST AREA | | TV 154 00 | 165 | SACS/ENRAF/Manually | | | 241-TX-302-C | TX Farm | TX-154 DB | 8024 | SACS/ENRAF/Manually | Returned to service 12/30/93 | | 241-U-301-B | U Farm | U-151, U-152, U-153, U-252 DB
UX-154 DB | 3488 | SACS/ENRAF/Manually | Marginary to equality 12,00,00 | | 241-UX-302-A | U Plant | | 130 | SACS/ENRAF/Manually | Replaced S-302-A, 10/91; ENRAF installed 7/98. | | 241-S-304 | S Farm | S-151 DB | 130 | SACS/ENTAF/Mentionly | Sump not alarming. | | 244-S-TK/SMP | S Farm | From original tanks to SY-102 | 27340 | SACS/Manually | WTF (uncorrected); transferred from S-219, 6/01 | | 244-TX-TK/SMP | TX Farm | From original tanks to SY-102 | 17017 | SACS/Manually | MT - pumped PFP 241-Z tank D-5 to 244-TX DCRT
12/1/01, level now 93.75 in. | | Vent Station Catch | Tenk | Cross Country Transfer Line | 376 | SACS/Manually | MT | | | | | | | | | Total | Active | Facilities | _17 | |-------|--------|-------------------|-----| | | | | | | LEGEND: | DB - | Diversion Box | |---------|--------------|---| | | DCRT - | Double-Contained Receiver Tank | | l | TK, SMP - | Tank, Sump | | | FIC, ENRAF - | Surface Level Measurement Devices | | | MT - | Manual Tape - Surface Level Measurement Device | | | Zip Cord - | Surface Level Measurement Device | | | WTF- | Weight Time Factor - can be recorded as WTF, CWF (corrected), and Uncorrected WTF | | | SACS - | Surveillance Automated Control System | | | MCS - | Monitor and Control System | | | Manually - | Not connected to any automated system | | | o/s - | Out of Service | ### TABLE C-2. EAST AREA INACTIVE MISC. UNDERGROUND STORAGE TANKS AND SPECIAL SURV. FACILITIES (CURRENTLY MANAGED BY CHG) INACTIVE - no longer receiving waste transfers November 30, 2001 | | | | | WASTE | MONITORED | | | |--|--------------------|-----------------|-------------------------------------|-----------|-----------|---|----| | | <u>FACILITY</u> | LOCATION | RECEIVED WASTE FROM: (or descrip.) | (Gallons) | <u>BY</u> | REMARKS | | | | 209-E-TK-111 | 209 E Bidg | Decon Catch Tank | Empty | NM | Removed from service 1988 | ٠. | | | 216-8Y-201 | BY Farm | TBP Waste Line | Unknown | NM | | • | | | 241-A-302-B | A Ferm | A-152 DB | 5798 | SACS/MT | Isolated 1985, Project B-138
Interim Stabilized 1990, Rain intrusion | | | | 241-AX-151 | N of PUREX | PUREX | Unknown | NM | Isolated 1985 | | | | 241-AX-152 | AX Ferm | AX-152 DB | 0 | SACS/MT | Declared Assumed Leaker; pumped to
AY-102 3/1/01, no longer being used | | | | 241-B-301-B | B Farm | 8-151, B-152, B-153, B-252 DB | 22250 | NM | Isolated 1985 (1) | | | | 241-B-302-B | B Farm | B-154 DB | 4930 | NM | isolated 1985 (1) | | | | 241-BX-302-A | BX Ferm | BR-152, BX-153, BXR-152, BYR-152 DB | 840 | NM | Isolated 1985 (1) | | | | 241-BX-302-B | BX Ferm | BX-154 DB | 1040 | NM | leolated 1985 (1) | | | | 241-BX-302-C | BX Ferm | BX-155 DB | 870 | NM | Isolated 1985 (1) | | | | 241-BY-ITS2-Tk 2 | BY Ferm | Heater Flush Tank | Unknown | NM | Stabilized 1977 | | | | 241-C-301-C | C Ferm | C-151, C-152, C-153, C-252 DB | 10470 | NM | Isolated 1985 (1) | | | | 241-ER-311A | SW B Plant | ER-151 DB | Empty | NM | Abendoned in place 1954 | | | | 244-AR Voult | A Complex | Between farms & B-Plant | Unknown | NM | Not actively being used, systems activated for final clean out. | | | | 244-BXR-TK/SMP-001 | BX Ferm | Transfer lines | 7200 | NM | Interim Stabilization 1985 (1) | | | | 244-BXR-TK/SMP-002 | BX Farm | Transfer lines | 2180 | NM | Interim Stabilization 1985 (1) | | | | 244-BXR-TK/SMP-003 | BX Farm | Transfer lines | 1810 | NM | Interim Stabilization 1985 (1) | | | | 244-BXR-TK/SMP-011 | BX Farm | Transfer lines | 7100 | · NM | Interim Stabilization 1985 (1) | | | | • | | | | | | | | Total East A | rea Inactive Facilities | 18 | |--------------|-------------------------|----| | LEGEND: | DB - | Diversion Box | |---------|-----------|---------------------------------------| | 1 | DCRT - | Double-Contained Receiver Tank | | 1 | MT - | Manual Tapa | | 1 | SACS - | Surveillance Automated Control System | | | TK, SMP - | Tank, Sump | | | R - | Replacement | | | NM - | Not Monitored | ### TABLE C-3. WEST AREA INACTIVE MISC. UNDERGROUND STORAGE TANKS AND SPECIAL SURV. FACILITIES (CURRENTLY MANAGED BY CHG) INACTIVE - no longer receiving waste transfers November 30, 2001 | | | | WASTE | MONITORE | D | | |---------------------|----------------------|---|---------------------|-----------------|--|--------| | FACILITY | LOCATION | RECEIVED WASTE FROM: (or d | escr (Gallons) | <u>BY</u> | <u>REMARKS</u> | | | 213-W-TK-1 | E of 213-W | Water Retention Tank | Unknown | NM | Contains only water | | | | Compactor Facility | • | | | • | | | 231-W-151-001 | N. of Z Plent | 231-Z Floor drains | Unknown | NM | Inective, lest date 1974 | | | 231-W-151-002 | N. of Z. Plant | 231-Z Floor drains | Unknown | NM | Inactive, last data 1974 | | | 241-S-302 | S Farm | 240-S-151 DB | 8340 | SACS/ENRAF | Assumed Leaker EPDA 85-04 | | | 241-S-302-A | S Ferm | 241-S-151 DB | 0 | | Assumed Leaker TF-EFS-90-042 | | | Pertially
fil | led with grout 2/91 | I, determined still to be an assumed leak | er after leak test. | Menual FIC read | lings are unobtainable due to dry grouted surface. | | | CASS moi | nitoring system reti | red 2/23/99; intrusion readings discontin | ued. S-304 repla | ced S-302-A | | | | 241-S-302-B | S Farm | S Encasements | Empty | NM | leciated 1985 (1) | | | 241-5X-302 (SX-304) | SX Ferm | SX-151 DB, 151 TB | Unknown | NM | Isolated 1987 | | | 241-T-301 | T Ferm | DB T-151, -151, -153, -252 | Unknown | NM | Isolated 1985 (241-T-301B) | | | 241-TX-302 | TX Farm | TX-153 DB | Unknown | NM | Isolated 1985 (1) | | | 241-TX-302-X-B | TX Ferm | TX Encasements | Unknown | NM | Isolated 1985 (1) | | | 241-TX-302-B | TX Farm | TX-155 DB | 1600 | SACS/MT | New MT installed 7/16/93 | | | 241-TX-302-B(R) | E. of TX Ferm | TX-155 DB | Unknown | NM | Isolated | | | 241-TY-302-A | TY Farm | TX-153 DB | Unknown | NM | lecieted 1985 (1) | | | 241-TY-302-B | TY Ferm | TY Encasements | Empty | NM | Isolated 1985 (1) | | | 241-Z-8 | E. of Z Plant | Recupiex waste | Unknown | NM | Isolated, 1974, 1975 | | | 242-T-135 | T Evaporator | T Evaporator | Unknown | NM | Isolated | | | 242-TA-R1 | T Evaporator | Z Plant waste | Unknown | NM | Isolated | | | 243-S-TK-1 | N. of S Farm | Personnel Decon. Facility | Empty | NM | Isolated | | | 244-TXR-TK/SMP-001 | TX Farm | Transfer lines | Unknown | NM | Interim Stabilized, MT removed 1984 (1) | | | 244-TXR-TK/SMP-002 | TX Farm | Transfer lines | Unknown | NM | Interim Stabilized, MT removed 1984 (1) | | | 244-TXR-TK/SMP-003 | TX Ferm | Transfer lines | Unknown | NM | Interim Stabilized, MT removed 1984 (1) | | | 244-UR-001 Vault TK | U-Ferm | Tank, Sump and Cell | 4220 | NM | Stabilized 1985 | | | 244-UR-002 Vault TK | U-Farm | Tank, Sump and Cell | 1400 | NM | Stabilized 1985 | | | 244-UR-003 Vault Tk | U-Farm | Tank, Sump and Cell | 5996 | NM | Stabilized 1985 | | | 244-UR-004 Vault Tk | U-Ferm | Tank, Sump and Cell | Empty | NM | Stabilized 1985 | | | T | otal West Area | Inactive Facilities 25 | LEGEND: | DB. TB - | Diversion Box, Transfer Box | \neg | | <u> </u> | | | 1 | • • = | Double-Contained Receiver Tank | - [| | | | | | | Surface Level Measurement Devices | - [| | | | | | | Manual Tape - Surface Level Measurement Device | - [| | | | | | | Tank, Sump | I | | | | | | • | Surveillence Autometed Control System | | | | | | 1 | -
- | | 1 | Replacement Not Monitored # APPENDIX D GLOSSARY OF TERMS #### TABLE D-1. GLOSSARY OF TERMS #### 1. TANK STATUS CODES #### TANK USE (Double-Shell Tanks Only) CWHT Concentrated Waste Holding Tank DRCVR EVFD Dilute Receiver Tank **Evaporate Feed Tank** SRCVR Slurry Receiver Tank #### 2. **DEFINITIONS** #### **WASTE TANKS - General** #### Waste Tank Safety Issue A potentially unsafe condition in the handling of waste material in underground storage tanks that requires corrective action to reduce or eliminate the unsafe condition. There are currently no waste tank safety issues. #### Characterization Characterization is understanding the Hanford tank waste chemical, physical, and radiological properties to the extent necessary to ensure safe storage and interim operation, and ultimate disposition of the waste. #### **WASTE TYPES** #### Aging Waste (AW) High level, first cycle solvent extraction waste from the PUREX plant (NCAW). #### Concentrated Complexant (CC) Concentrated product from the evaporation of dilute complexed waste. #### Concentrated Phosphate Waste (CP) Waste originating from the decontamination of the N Reactor in the 100 N Area. Concentration of this waste produces concentrated phosphate waste. #### Dilute Complexed Wate (DC) Characterized by a high content of organic carbon including organic complexants: ethylenediaminetetraacetic acid (EDTA), citric acid, and hydroxyethyl-ethylenediaminetriacetic acid (HEDTA), were the major complexants used. Main sources of DC waste in the DST system are saltwell liquid inventory (from SSTs). #### Dilute Non-Complexed Waste (DN) Low activity liquid waste originating from S and T Plants, the 300 and 400 Areas, PUREX facility (decladding supernatant and miscellaneous wastes), 100 N Area (sulfate waste), B Plant, saltwells, and PFP (supernatant). #### Drainable Interstitial Liquid (DIL) Interstitial liquid that is not held in place by capillary forces and will, therefore, migrate or move by gravity. (See also Section 3 below) #### Double-Shell Slurry (DSS) Waste that exceeds the sodium aluminate saturation boundary in the evaporator without exceeding receiver tank composition limits. For reporting purposes, DSS is considered a solid. #### Double-Shell Slurry Feed (DSSF) Waste concentrated just before reaching the sodium aluminate saturation boundary in the evaporator without exceeding receiver tank composition limits. This form is not as concentrated as DSS. #### Supernatant Liquid The liquid above the solids or in large liquid pools covered by floating solids in waste storage tanks. (See also Section 3 below) #### INTERIM STABILIZATION (Single-Shell Tanks only) #### Interim Stabilized (IS) A tank which contains less than 50 Kgallons of drainable interstitial liquid and less than 5 Kgallons of supernatant. If the tank was jet pumped to achieve interim stabilization, then the jet pump flow or saltwell screen inflow must also have been at or below 0.05 gpm before interim stabilization criteria are met. #### Jet Pump The jet pump system includes 1) a jet assembly with foot valve mounted to the base of two pipes that extend from the top of the well casing to near the bottom of the well casing inside the saltwell screen, 2) a centrifugal pump to supply power fluid to the down-hole jet assembly, 3) flexible or rigid transfer jumpers, 4) a flush line, and 5) a flowmeter. The jumpers contain piping, valves, and pressure and limit switches. The centrifugal pump and jet assembly are needed to pump the interstitial liquid from the saltwell screen into the pump pit, nominally a 40-foot elevation rise. The power fluid passes through a nozzle in the jet assembly and acts to convert fluid pressure head to velocity head, thereby reducing the pressure in the jet assembly chamber. The reduction in pressure allows the interstitial liquid to enter the jet assembly chamber and mix with the power fluid. Velocity head is converted to pressure head above the nozzle, lifting power fluid, and interstitial liquid to the pump pit. Pumping rates vary from 0.05 to about 4 gpm. #### Saltwell Screen The saltwell system is a 10-inch diameter saltwell casing consisting of a stainless steel saltwell screen welded to a Schedule 40 carbon steel pipe. The casing and screen are to be inserted into the 12-inch tank riser located in the pump pit. The stainless steel screen portion of the system will extend through the tank waste to near the bottom of the tank. The saltwell screen portion of the casing is an approximately 10-foot length of 300 Series, 10-inch diameter, stainless steel pipe with screen openings (slots) of 0.05 inches. #### **Emergency Pumping Trailer** A 45-foot tractor-type trailer is equipped to provide storage space and service facilities for emergency pumping equipment: this consists of two dedicated jet pump jumpers and two jet pumps, piping and dip tubes for each, two submersible pumps and attached piping, and a skid-mounted Weight Factor Instrument Enclosure with an air compressor and electronic recording instruments. The skid also contains a power control station for the pumps, pump pit leak detection, and instrumentation. A rack for over 100 feet of overground double-contained piping is also in the trailer. #### INTRUSION PREVENTION (ISOLATION) (Single-Shell Tanks only) #### Partially Interim Isolated (PI) The administrative designation reflecting the completion of the physical effort required for Interim Isolation except for isolation of risers and piping that is required for jet pumping or for other methods of stabilization. #### Interim Isolated (II) The administrative designation reflecting the completion of the physical effort required to minimize the addition of liquids into an inactive storage tank, process vault, sump, catch tank, or diversion box. In June 1993 the term "Interim Isolation" was replaced by "Intrusion Prevention." #### Intrusion Prevention (IP) Intrusion Prevention is the administrative designation reflecting the completion of the physical effort required to minimize the addition of liquids into an inactive storage tank, process vault, sump, catch tank, or diversion box. Under no circumstances are electrical or instrumentation devices disconnected or disabled during the intrusion prevention process (with the exception of the electrical pump). #### Controlled, Clean, and Stable (CCS) Controlled, Clean, and Stable reflects the completion of several objectives: "Controlled" - provide remote monitoring for required instrumentation and implement controls required in the TWRS Authorization Basis; "Clean" - remove surface soil contamination and downpost the Tank Farms to RBA/URMA/RA radiological control status, remove abandoned equipment, and place reusuable equipment in compliant storage; and "Stable" - remove pumpable liquids from the SSTs and IMUSTs and isolate the tanks. #### TANK INTEGRITY #### Sound The integrity classification of a waste storage tank for which surveillance data indicate no loss of liquid attributed to a breach of integrity. #### **Assumed Leaker** The integrity classification of a waste storage tank for which surveillance data indicate a loss of liquid attributed to a breach of integrity. #### Assumed Re-Leaker A condition that exists after a tank has been declared as an "assumed leaker" and then the surveillance data indicate a <u>new</u> loss of liquid attributed to a breach of integrity. #### TANK INVESTIGATION #### Intrusion A term used to describe the infiltration of liquid into a waste tank. #### SURVEILLANCE INSTRUMENTATION #### Drywells Historically, the drywells
were monitored with gross logging tools as part of a secondary leak monitoring system. In some cases, neutron-moisture sensors were used to monitor moisture in the soil as a function of well depth, which could be indicative of tank leakage. The routine gross gamma logging data were stored electronically from 1974 through 1994. The routine gross gamma logging program ended in 1994. A program was initiated in 1995 to log each of the available drywells in each tank farm with a spectral gamma logging system. The spectral gamma logging system provides quantitative values for gamma-emitting radionuclides. The baseline spectral gamma logging database is available electronically. Repeat spectral drywell scans are not part of the established Tank Farm leak detection program, but they can be run on request if special needs arise. A select subset of drywells is routinely monitored by the Vadose Zone Characterization Project to assess movement of gamma-emitting radionuclides in the subsurface. #### Laterals Laterals are horizontal drywells positioned under single-shell waste storage tanks to detect radionuclides in the soil which could be indicative of tank leakage. These drywells can be monitored by radiation detection probes. Laterals are 4-inch inside diameter steel pipes located 8 to 10 feet below the tank's concrete base. There are three laterals per tank. Laterals are located only in A and SX farms. There are currently no functioning laterals and no plan to prepare them for use. #### Surface Levels The surface level measurements in all waste storage tanks are monitored by manual or automatic conductivity probes, and recorded and transmitted or entered into the Surveillance Analysis Computer System (SACS). #### **Automatic FIC** An automatic waste surface level measurement device is manufactured by the Food Instrument Company (FIC). The instrument consists of a conductivity electrode (plummet) connected to a calibrated steel tape, a steel tape reel housing and a controller that automatically raises and lowers the plummet to obtain a waste surface level reading. The controller can provide a digital display of the data and until February 1999, the majority of the FICs transmitted readings to the CASS. Since CASS retirement, all FIC gauges are read manually. FICs are being replaced by ENRAF detectors (see below). #### **ENRAF 854 ATG Level Detector** FICs and some manual tapes are in the process of being replaced by the ENRAF ATG 854 level detector. The ENRAF gauge, fabricated by ENRAF Incorporated, determines waste level by detecting variations in the weight of a displacer suspended in the tank waste. The displacer is connected to a wire wound onto a precision measuring drum. A change in the waste level causes a change in the weight of the displacer which will be detected by the force transducer. Electronics within the gauge causes the servo motor to adjust the position of the displacer and compute the tank level based on the new position of the displacer drum. The gauge displays the level in decimal inches. The first few ENRAFs that received remote reading capability transmit liquid level data via analog output to the TMACS. The remaining ENRAFs and future installations will transmit digital level data to TMACS via an ENRAF Computer Interface Unit (CIU). The CIU allows fully remote communication with the gauge, minimizing tank farm entry. #### **Annulus** The annulus is the space between the inner and outer shells on <u>DSTs</u> only. Drain channels in the insulating and/or supporting concrete carry any leakage to the annulus space where conductivity probes are installed. The annulus conductivity probes and radiation detectors are the primary means of leak detection for all DSTs. #### Liquid Observation Well (LOW) In-tank liquid observation wells are used for monitoring the interstitial liquid level (ILL) in single-shell tanks. The wells are usually constructed of fiberglass or TEFZEL-reinforced epoxy-polyester resin (TEFZEL is a trademark of E. I. du Pont de Nemours & Company). There are a few LOWs constructed of steel. LOWs are sized to extend to within 1 inch of the bottom of the waste tank, are sealed at their bottom ends, and have a nominal outside diameter of 3.5 inches. Gamma and neutron probes are used to monitor changes in the ILL, and can indicate intrusions or leakage by increases or decreases in the ILL. There are 65 LOWs (64 are in operation) installed in SSTs that contain or are capable of containing greater than 50 Kgallons of drainable interstitial liquid. Two LOWs installed in DSTs SY-102 and AW-103 are used for special, rather than routine, surveillance purposes only. #### Thermocouple (TC) A thermocouple is a thermoelectric device used to measure temperature. More than one thermocouple element on a device (probe) is called a thermocouple tree. In DSTs there may be one or more thermocouple trees in risers in the primary tank. In addition, in DSTs only, there are TC elements installed in the insulating concrete, the lower primary tank knuckle, the secondary tank concrete foundation, and in the outer structural concrete. These monitor temperature gradients within the concrete walls, bottom of the tank, and the domes. In SSTs, one or more thermocouples may be installed directly in a tank, although some SSTs do not have any trees installed. A single TC element may be installed in a riser or lowered down an existing riser or LOW. There are also four thermocouple laterals beneath tank 105-A in which temperature readings are taken in 34 TC elements. In-tank Photographs and Videos In-tank photographs and videos may be taken to aid in resolving in-tank measurement anomalies and determine tank integrity. Photographs and videos help determine sludge and liquid levels by visual examination. #### **ACRONYMS** <u>CCS</u> Controlled, Clean, and Stable (tank farms) FSAR Final Safety Analysis Report effective October 18, 1999 II Interim Isolated IP Intrusion Prevention Completed IS Interim Stabilized MT/FIC/ Manual Tape, Food Instrument Corporation, ENRAF Corporation (surface level measurement **ENRAF** devices) OSD Operating Specifications Document PI Partial Interim Isolated SAR Safety Analysis Report SHMS Standard Hydrogen Monitoring System TMACS Tank Monitor and Control System TPA Hanford Federal Facility Consent and Compliance Order, "Washington State Department of Ecology, U. S. Environmental Protection Agency, and U. S. Department of Energy," as amended (Tri-Party Agreement) TSR Technical Safety Requirement USO Unreviewed Safety Question ### 3. <u>INVENTORY AND STATUS BY TANK - COLUMN VOLUME CALCULATIONS AND DEFINITIONS</u> <u>FOR TABLE B-1 (Single-Shell Tanks only)</u> | COLUMN HEADING | COLUMN VOLUME CALCULATIONS (Underlined)/DEFINITIONS | |------------------------|--| | Total Waste | Solids volume plus Supernatant Liquid. Solids include sludge and saltcake (see definitions below). | | Supernatant Liquid (1) | May be either measured or estimated. Supernatant is either the estimated or measured liquid floating on the surface of the waste or under a floating solids crust. In-tank photographs or videos are useful in estimating the liquid volumes; liquid floating on solids and core sample data are useful in estimating large liquid pools under a floating crust. | | COLUMN HEADING | COLUMN VOLUME CALCULATIONS (Underlined)/DEFINITIONS | |---|---| | Drainable Interstitial Liquid (DIL) (1) | This is initially calculated. Drainable interstitial liquid is calculated based on the saltcake and sludge volumes, using calculated porosity values from past pumping or actual data for each tank. Interstitial liquid is liquid that fills the interstitial spaces of the solids waste. The sum of the interstitial liquid contained in saltcake and sludge minus an adjustment for capillary height is the initial volume of drainable interstitial liquid. | | Pumped This Month | Net total gallons of liquid pumped from the tank during the month. If supernatant is present, pump production is first subtracted from the supernatant volume. The remainder is then subtracted from the drainable interstitial liquid volume. | | Total Pumped (1) | Cumulative net total gallons of liquid pumped from 1979 to date. | | Drainable Liquid
Remaining (DLR) (1) | Supernatant plus Drainable Interstitial Liquid. The total Drainable Liquid Remaining is the sum of drainable interstitial liquid and supernatant. | | Pumpable Liquid
Remaining (PLR) (1) | <u>Drainable Liquid Remaining minus unpumpable volume</u> . Not all drainable interstitial liquid is pumpable. | | Sludge | Solids formed during sodium hydroxide additions to waste. Sludge was usually in the form of suspended solids when the waste was originally received in the tank from the waste generator. In-tank photographs or videos may be used to estimate the volume. | | Saltcake | Results from crystallization and precipitation after concentration of liquid waste, usually in an evaporator. If saltcake is layered over sludge, it is only possible to measure total solids volume. In-tank photographs or videos may be used to estimate the saltcake volume. | | Solids Volume Update | Indicates
the latest update of any change in the solids volume. | | Solids Update Source -
See Footnote | Indicates the source or basis of the latest solids volume update. | | Last In-Tank Photo | Date of last in-tank photographs taken. | | Last In-Tank Video | Date of last in-tank video taken. | | See Footnotes for These
Changes | Indicates any change made the previous month. A footnote explanation for the change follows the Inventory and Status by Tank Appendix (Table B-1). | ⁽¹⁾ Volumes for supernatant, DIL, DLR, and PLR are not shown in these columns until interim stabilization is completed. Total gallons pumped, total waste, sludge, and saltcake volumes are shown and adjusted based on actual pumping volumes. This page intentionally left blank. # APPENDIX E TANK CONFIGURATION AND FACILITIES CHARTS Figure E-1. High-Level Waste Tank Configuration Figure E-2. Double-Shell Tank Instrumentation Configuration Figure E-3. Single-Shell Tank Instrumentation Configuration . THE TANK FARM FACILITIES CHARTS (colored foldouts) ARE ONLY BEING INCLUDED IN THIS REPORT ON A QUARTERLY BASIS (i.e., months ending March 31, June 30, September 30, and December 31) NOTE: COPIES OF THE FACILITES CHARTS CAN BE OBTAINED FROM DENNIS BRUNSON, LMSI MULTI-MEDIA SERVICES 376-2345, G3-51 ALMOST ANY SIZE IS AVAILABLE, WHICH CAN BE LAMINATED A PURCHASING CARD (P-Card) IS REQUIRED This page intentionally left blank ### DISTRIBUTION October 31, 2001 #### Number of copies #### **OFFSITE - USA** 2 Congress of the United States . . . U. S. Senate 717 Hart Senate Building Washington D.C. 20510 Senator Ron Wyden U. S. House of Representatives 1323 Longworth House Office Building Washington D. C. 20515 Congressman Richard "Doc" Hastings, 4th District Atten: Jeff Markey U. S. Department of Energy-Headquarters 1000 Independence Avenue, SW Washington, D. C. 20585 Harry Calley EM-38 Cloverleaf Bldg. Willam M. Levitan EM-1 FORS/5A-014 U. S. Department of Energy-Headquarters 19901 Germantown Rd Germantown, MD 20874 **Kurt Juroff** EM-44 Ralph Lightener EM-44 1 Washington State Department of Ecology **Nuclear Waste Program** P. O. Box 47600 Olympia, WA 98504-7600 Roger Stanley 1 Washington State Department of Health Radiation Protection 7171 Cleanwater Lane P. O. Box 47827 Olympia, WA 98504-7827 Allen W. Conklin 1 Oregon State Office of Energy 625 Marion St. NE, Suite 1 Salem, OR 97301 Dirk Dunning Do not remove from distribution without permission from ODOE | i | Donald I. Oakley | | |---------------|--|--| | | 4750 41" St, NW, #1 | | | | Washington, DC 20016 | | | _ | | | | 1 | MACTEC | | | | 8310 Centerbrook Place | | | | Alexandra, VA 22308 | | | | | | | | Stanley Blacker, Vice Presider | | | • | Do not remove from distribu | tion without permission from addressee | | | | | | 1 | CH2M HILL | | | | 6060 S. Willow Drive | | | | Greenwood Village, CO 8011 | 1-5142 | | | • | | | | Dr. Bob Iotti, President and G | eneral Manager | | | | | | TRI-CITIES: | | | | 11G-C1111DV. | | | | 1 | ARES Corporation | | | | 636 Jadwin Ave., Suite B | | | | Richland, WA 99352 | | | | Ricinaldi, WA 33332 | | | 1 | Winward Projector | | | 1 | Winward Environmental 3110 W. Metaline | | | | | | | | Kennewick, WA 99336 | | | | D T Winned | • | | | R. T. Winward | | | | Dishard Water | | | 1 | Richard Welty | | | | 409 S. 41 st Ave | | | | W. Richland, WA 99353 | | | O>107777 | | | | <u>ONSITE</u> | | | | | 7.4.0000 DD0 | | | 1 | MACTEC - ERS | Ta 44 | | | J. F. Bertsch | B2-62 | | • | 6 | | | 1 | General Accounting Office | | | | C. R. Abraham | A1-80 | | _ | | | | 1 | Washington State Departme | | | | Library | B5-18 | | | | | | 1 | U. S. Environmental Protect | | | | D. R. Sherwood | B5-01 | | | | | | 9 | U. S. Department of Energy | | | | | | | | D. C. Bryson | H6-60 | | | V. L Callahan | H6-60 | | | E. J. Cruz | H6-60 | | | D. H. Irby | H6-60 | | | Wen-Shou Liou | H6-60 | | | J. L. Polehn | H6-60 | | | M. J. Royack | H6-60 | D: J. Williams H6-60 Reading Room H2-53 #### 2 Pacific National Northwest Laboratories J. L. Huckaby K7-15 B. E. Opitz K6-75 #### 94 CH2M Hill (CHG), and Affiliated Companies D. I. Allen R2-50 J. C. Allen-Floyd H6-06 E. S. Aromi H6-63 K. M. Bowen R2-12 V. C. Boyles R2-11 R1-04 R. J. Cash J. L. Cowin T4-08 R1-44 W. L. Cowley C. DeFigh-Price R2-58 T7-04 J. N. Doeler R. A. Dodd H6-22 A. F. Erhart R3-73 S. D. Estey R2-11 H6-04 A. C. Etheridge J. G. Field R2-12 L. A. Fort R2-11 K. D. Fowler R2-11 G. T. Frater S5-05 R. L. Frink T4-08 J. C. Fulton R2-50 J. R. Freeman-Pollard R2-50 J. S. Garfield L4-07 K. A. Gasper L4-07 B. C. Gooding T4-07 B. M. Hanlon (6) R3-72 D.C. Hedengren R3-73 C. C. Hendersen B2-05 B. A. Higley R3-73 S. W. Hildreth T4-07 K. M. Hodgson R1-14 T. M. Hohl R3-73 B. A. Johnson S7-02 T. E. Jones H0-22 J. Kalia R1-43 M. R. Kembel S5-07 R. A. Kirkbride R3-73 P. F. Kison T4-07 N. W. Kirch R3-73 J. S. Konvu S7-64 G. M. Koreski R2-11 J. G. Kristofzski R2-39 J. A. Lechelt R2-11 T. H. May R2-11 J.A. McDonald Jr. R2-50 D. L. Parker R1-04 | M. A. Payne | H6-63 | |-------------------------|--------| | R. E. Pohto | S7-95 | | R. S. Popielarczyk | S5-07 | | R. E. Raymond (2) | R2-50 | | B. J. Rabe | \$7-03 | | W. E. Ross | S7-83 | | N. J. Scott-Proctor | S5-00 | | J. P. Sederburg | R1-04 | | J. N. Strode | R3-73 | | T. D. Taylor | H6-64 | | R. R. Thompson | H6-22 | | D. T. Vladimiroff | S7-20 | | J. A. Voogd | R2-50 | | - | | | L. R. Webb (10) | R1-10 | | L. D. Wiberg (12) | R1-51 | | Central Files | B1-07 | | 200 West Shift Office | T4-00 | | 200 East Shift Office | S7-02 | | Environmental | 2, 32 | | Data Mgmt Center (2) | H6-08 | | Unified Dose Assessment | 110-00 | | | 40.00 | | Center (UDAC) | A0-20 | | - | | |-------------------------|--------| | M. A. Payne | H6-63 | | R. E. Pohto | S7-95 | | R. S. Popielarczyk | S5-07 | | R. E. Raymond (2) | R2-50 | | B, J. Rabe | \$7-03 | | W. E. Ross | S7-83 | | N. J. Scott-Proctor | S5-00 | | J. P. Sederburg | R1-04 | | J. N. Strode | R3-73 | | T. D. Taylor | H6-64 | | R. R. Thompson | H6-22 | | D. T. Vladimiroff | S7-20 | | J. A. Voogd | R2-50 | | L. R. Webb (10) | R1-10 | | L. D. Wiberg (12) | R1-51 | | Central Files | B1-07 | | 200 West Shift Office | T4-00 | | 200 East Shift Office | S7-02 | | Environmental | | | Data Mgmt Center (2) | H6-08 | | Unified Dose Assessment | | | Center (UDAC) | A0-20 |